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Abstract. We provide a uniform bound for the index of cohomology classes in HipF, µbi´1
` q

when F is a semiglobal field (i.e., a one-variable function field over a complete discretely valued
field K). The bound is given in terms of the analogous data for the residue field of K and its
finitely generated extensions of transcendence degree at most one. We also obtain analogous
bounds for collections of cohomology classes. Our results provide recursive formulas for function
fields over higher rank complete discretely valued fields, and explicit bounds in some cases when
the information on the residue field is known. In the process, we prove a splitting result for
cohomology classes of degree 3 in the context of surfaces over finite fields.

1. Introduction

It is classical that the index of a central simple algebra over a global field F is equal to its
period as an element of the Brauer group. In terms of Galois cohomology, this says that any
element of H2pF, µnq is split by an extension of degree n over F . The corresponding assertion
does not generally hold for other fields F , though the period always divides the index, and the
index always divides some power of the period ([Pie82], Proposition 14.4(b)(ii)). In [Sal97] (see
also [Sal98]), it was shown that for a one-variable function field1 F over Qp, the index divides
the square of the period, provided that the period is prime to p.

More generally, given a field F , one can ask if there is a uniform bound on the index in
terms of the period, that is, whether there is an integer d such that the index of every central
simple F -algebra divides the d-th power of its period. Starting with [CT01, page 12] (see also
[Lie08]), the idea has emerged that for large classes of fields, such a uniform bound d should
exists, and that it should increase by one upon passage to one-variable function fields. So far,
there have been a number of results giving such bounds and giving evidence for this idea. In the
case that F is a one-variable function field over a complete discretely valued field with residue
field k, and the period is prime to charpkq, such a bound d for F was found in [Lie11] and
[HHK09] in terms of the corresponding bounds for fields that are extensions of k that are either
finite or finitely generated of transcendence degree one. This generalized [Sal97]. More recently,
for such a field F , a bound was found for a “simultaneous index” in [Gos19]; i.e., for the degree
of an extension of F that simultaneously splits an arbitrary finite set of `-torsion Brauer classes
over F , for a given prime ` ‰ charpkq.
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1In this paper, we use the term one-variable function field F over a field K to mean a finitely generated extension
of K of transcendence degree one; we do not require K to be algebraically closed in F .
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In this paper, we focus on higher degree Galois cohomology groups H ipF, µbi´1n q, for i ą 2.
These higher cohomology groups have already been the subject of much investigation from
various perspectives. We note in particular that in [Kat86] these were viewed in certain contexts
as generalizations of the n-torsion subgroup H2pF, µnq of the Brauer group BrpF q for F a
higher dimensional local or global field. However, much less is known in general about uniform
period-index bounds for these groups; and although some conjectures have been made (see for
example [Kra16, Conjecture 1, page 997]), supporting evidence has been difficult to obtain. Some
important progress has been made in the case of degree 3 cohomology, showing that period and
index coincide in the case of function fields of p-adic curves ([PS98]), function fields of surfaces
over finite fields ([PS16]), and more recently for function fields of curves over imaginary number
fields [Sur20]. Motivated by Kato’s work, by the results on Brauer groups, as well as these results
for degree 3 cohomology, in this paper we study the problem of bounding the index of a class in
H ipF, µbi´1` q in terms of its period `, where F is a one-variable function field over a complete
discretely valued field K with residue field k; and more generally bounding the minimal degree
of an extension of F that simultaneously splits finitely many such classes. Namely, we define
ssdi`pF q, called the stable i-splitting dimension at ` of F , to be the minimal d such that for all
finite extensions L{F , and for all α P H ipL, µbi´1` q, indpαq divides `d. We similarly define the
generalized stable i-splitting dimension at ` of F to be an analogous quantity gssdi`pF q for the
simultaneous splitting of finite sets of elements B Ď H ipL, µbi´1` q. In Theorem 2.9, we show
the following generalization of the main theorem in [Gos19]:

Theorem. In the above situation, ssdi`pF q ď ssdi`pkq` ssdi`pkpxqq` ε, where ε “ 2 if ` is odd and
ε “ 3 if ` “ 2. The analogous bound also holds for gssdi`pF q. Here i is any positive integer.

Our approach first reduces to the case of unramified classes using a splitting result of [Gos19].
The proof in the unramified case relies on patching over fields, a framework introduced in
[HH10] (which was also used in [HHK09] and [Gos19]). In particular, it relies on a local-global
principle for Galois cohomology from [HHK14]. In the case when i “ 2, i.e., when considering
classes in the Brauer group, our bound agrees with that given in [Gos19] for collections of
Brauer classes, but it is weaker than the bound given in [HHK09] for a single Brauer class. The
main theorem implies recursive bounds for function fields over higher rank complete discretely
valued fields. In the final section of this paper, we apply our results in specific situations to
obtain explicit numerical bounds for ssdi`pF q and gssdi`pF q. These bounds give information on
degree 3 and higher cohomology classes, in cases when the information on the Brauer group is
not sufficient to obtain bounds with prior methods. For example, if F is a one-variable function
field over a complete discretely valued field whose residue field is a global function field and
` is odd, then gssd3

`pF q is at most 3; see Proposition 8.4. In order to obtain these numerical
bounds, we prove a splitting result for surfaces over a finite field (Theorem 7.9), which should
be of independent interest. Both the splitting result and the applications build on work of Kato
(see [Kat86]).

We thank the anonymous referee for helpful comments that led to improvements and to
simplifications of some of the arguments.

2. Uniform bounds for cohomology classes

In this section, we define quantities that bound the degree of extensions needed to split a
cohomology class, or a finite collections of such classes.
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Definition 2.1. Let F be a field, and fix a prime ` ‰ charpF q and a positive integer i. A field
extension L{F is called a splitting field for a class α P H ipF, µbi´1` q, if the image αL of α under
the natural map H ipF, µbi´1` q Ñ H ipL, µbi´1` q is trivial. In that case, we also say that α splits
over L. Similarly, if B Ď H ipF, µbi´1` q is a collection of elements, we say that a field extension
L{F is a splitting field for B if it is splitting field for each element of B.
The index of a class α P H ipF, µbi´1` q, denoted by indpαq, is the greatest common divisor

of the degrees of splitting fields of α that are finite over F . Similarly, the index of a subset
B Ď H ipF, µbi´1` q is the greatest common divisor of the degrees of splitting fields of B that are
finite over F .

Remark 2.2. We will frequently use that if α P H ipF, µbi´1` q and E{F is a finite field exten-
sion of degree prime to ` such that αE is trivial, then α is trivial, by a standard restriction-
corestriction argument (using that the composition of restriction and corestriction is multiplica-
tion by the degree).

Lemma 2.3. For F a field, ` ‰ charpF q a prime, and i a positive integer, let α P H ipF, µbi´1` q.
Then there exists a splitting field L{F so that rL : F s is a power of `. In particular, the index of α
is a power of `. More generally, the index of a finite subset B Ď H ipF, µbi´1` q is a power of `.

Proof. Let ρ be a primitive `-th root of unity, and let rF :“ F pρq. By the Bloch-Kato con-
jecture/norm residue isomorphism theorem ([Voe11, Theorem 6.16]; see also [Wei09]), α

rF P

H ip rF , µbi´1` q – H ip rF , µbi` q may be written as a sum of symbols. That is, α
rF “

řm
j“1 βj , where

βj “ pbj1q Y ¨ ¨ ¨ Y pbjiq for elements bjk P rFˆ; here for b P rFˆ, pbq denotes the class in
H1p rF , µ`q – rFˆ{p rFˆq`. It then follows that E :“ rF p

?̀
b11, . . . ,

?̀
bm1q is a splitting field for α

(see also [Kra16], Remark 2.3). Let rE be the Galois closure of E{F . Note that rE{ rF is a com-
positum of cyclic (Galois) extensions of prime degree ` (viz., those obtained by adjoining `-th
roots of the Galp rF {F q-conjugates of the elements bjk). Hence Galp rE{ rF q is a subdirect product
of cyclic groups of order ` (see, e.g. [DF91], Chap. 14, Proposition 21). By induction, one checks
that such a subdirect product is in fact a direct product of cyclic groups of order `, using that
for H1 cyclic of order ` and H2 of `-power order, H1 XH2 is either equal to H1 or trivial. Thus
Galp rE{ rF q is an (elementary abelian) `-group. By the Schur-Zassenhaus theorem ([Zas49], IV.7.
Theorem 25; or [Suz82], Chap. 2, Theorem 8.10), Galp rE{F q contains a subgroup of `-power in-
dex and order r rF : F s dividing `´ 1. Its fixed field is an extension L{F of `-power order. Since
rE{L is of degree prime to ` and rE is a splitting field of α, so is L (Remark 2.2), proving the
first assertion. Note that the same argument applies to finite collections of cohomology classes.
The statements on the index are immediate consequences. �

As a consequence of the above lemma, we can make the following definition.

Definition 2.4. For a prime ` and a positive integer i, we say that the i-splitting dimension at `
of F , denoted by sdi`pF q, is the minimal exponent n so that indpαq | `n for all α P H ipF, µbi´1` q.

We would like to show that the splitting dimension behaves in a controlled way upon finitely
generated extensions of certain fields, and with respect to complete fields and their residues. In
order to facilitate this, we will use a stronger form of splitting dimension, to require stability
under finite extensions. This is analogous to notions introduced for quadratic forms and central
simple algebras in [HHK09].
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Definition 2.5. Let i be a positive integer. We say that the stable i-splitting dimension at ` of F ,
denoted ssdi`pF q, is the minimal n so that sdi`pEq ď n for all finite field extensions E{F .

In analogy to [Gos19], we also consider collections of cohomology classes.

Definition 2.6. Let i be a positive integer. We define the generalized stable i-splitting dimension
of a field F , denoted by gssdi`pF q, to be the minimal exponent n so that indpBq | `n for all finite
field extensions E{F and all finite subsets B Ď H ipE, µbi´1` q.

The advantage of the generalized stable splitting dimension is that it provides information
about higher degree cohomology groups as well, as in [Gos19, Corollary 1.4].

Proposition 2.7. Let F be a field of characteristic unequal to `. For all i ě j ě 1,

ssdi`pF q ď gssdj`pF q

and

gssdi`pF q ď gssdj`pF q.

Proof. Let α P H ipE, µbi´1` q for some finite extension E of F and i ě j. By Remark 2.2,
we may assume that E contains a primitive `-th root of unity. We can then use the norm
residue isomorphism theorem as in the proof of Lemma 2.3 in order to write α as a finite
sum α “

ř

k βk Y γk where βk P HjpE, µbj´1` q “ HjpE, µbj` q. By definition, there exists a
finite extension L of E such that the `-adic valuation of rL : Es is at most gssdj`pF q and such
that L splits all βk occurring in the sum. But then L splits α, and the first claim follows. Note
that the same argument applies to finite collections of cohomology classes, hence the second
assertion. �

The next lemma shows another useful property of the generalized stable splitting dimension.

Lemma 2.8. If K is a complete discretely valued field having residue field k with charpkq ‰ `, then

gssdi`pKq ď gssdj`pkq

for all positive integers i ą j.

Proof. Since any finite extension of K is of the same form, it suffices to consider classes defined
over K . Let α1, . . . , αm P H ipK,µbi´1` q. By the Witt decomposition theorem ([GS17], Corol-
lary 6.8.8), that cohomology group is isomorphic to H ipk, µbi´1` q ‘H i´1pk, µbi´2` q, so each αr
is of the form pβr, β

1
rq, where βr, β

1
r are classes over the residue field of degree i and i ´ 1, re-

spectively. As in the proof of Proposition 2.7 above, we may assume that K contains a primitive
`-th root of unity and we may write βr and β1r as sums of terms that are each of the form γ Y δ

where γ P Hjpk, µbj´1` q. But then all βr, β1r are split by a finite extension k1{k such that the
`-adic valuation of rk1 : ks is at most gssdj`pkq. Since K is complete, this extension lifts to a finite
extension K 1{K of the same degree (by applying [SGA71, Théorème I.6.1] to lift the maximal
separable subextension, and then iteratively lifting p-th roots for the purely inseparable part).
This lift then splits α1, . . . , αm, by the Witt decomposition theorem applied to K 1 and k1. �

Our main result is the following theorem, which is proven in Section 5.
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Theorem 2.9. Suppose k is a field and ` is a prime unequal to the characteristic of k. Let kpxq
denote the rational function field over k in one variable. Let K be a complete discretely valued field
with residue field k, and let F be a one-variable function field over K . Then for all i ě 1,

ssdi`pF q ď ssdi`pkq ` ssdi`pkpxqq `

#

2 if ` is odd
3 if ` “ 2

and

gssdi`pF q ď gssdi`pkq ` gssdi`pkpxqq `

#

2 if ` is odd
3 if ` “ 2.

The main interest is in the case i ą 1. In fact, ssd1
`pF q “ 1 and gssd1

`pF q “ 8 for any
field F for which Fˆ{pFˆq` is infinite (in particular, for F as in the theorem). This is because
H1pE,Z{`Zq “ Eˆ{Eˆ` is then infinite for any finite extension E{F , and because a non-trivial
Z{`Z-torsor over E corresponds to a field extension that splits only over itself. For the same
reason, a non-trivial class α P H1pE,Z{`Zq satisfies indpαq “ `.
Even for i ą 1, we do not assert that these bounds are sharp. Nevertheless, in light of

this theorem and [HHK09, Theorem 5.5], it is natural to investigate more precisely how these
quantities grow. In particular, one might ask whether ssdi`pF q and gssdi`pF q are bounded above
by dimpF q ´ i ` 1 for certain naturally occurring fields F ; i.e., those obtainable from a prime
field by passing iteratively to finite generated field extensions of transcendence degree one over
a given field, and to henselian discretely valued fields with a given field as residue field. Here,
dimpF q is defined inductively, with the dimensions of Fp and Q set equal to 1 and 2, and with
the dimension increasing by one at each iterative step. But proving such an assertion seems a
long way off.

3. Preliminaries from Patching

The proof of the main theorem will use the patching framework introduced in [HH10] and
[HHK09], which we now recall.

Let K be a complete discretely valued field with residue field k, valuation ring OK , and
uniformizer t. Let F be a semiglobal field over K ; i.e., a one-variable function field over K . A
normal model of F is an integral OK-scheme X with function field F that is flat and projective
over OK of relative dimension one, and that is normal as a scheme. If X is regular, we call it
a regular model. Such a regular model exists by the main theorem in [Lip78] (see also [Sta22],
Theorem 0BGP). Let P be a finite nonempty set of closed points of X that contains all the sin-
gular points of the reduced closed fiber X red

k . Let U be the collection of connected components
of the complement X red

k r P .
For each U P U, we consider the ring RU Ă F consisting of the rational functions on X

that are regular at all points of U . The t-adic completion pRU of RU is an I-adically complete
domain, where I is the radical of the ideal generated by t in pRU . The quotient pRU{I equals
krU s, the ring of regular functions on the integral affine curve U . We write FU for the field of
fractions of pRU . If V Ď U , then pRU Ď pRV and FU Ď FV .

Also, for a (not necessarily closed) point P of X red
k , we let FP denote the field of fractions

of the complete local ring pRP :“ pOX ,P of X at P , and we let κpP q denote its residue field.
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The fields of the form FP , FU for P P P, U P U (and the rings pRP , pRU , respectively) are called
patches on X .

For a closed point P P X red
k , we consider height one primes ℘ of the complete local ring pRP

that contain the uniformizing parameter t P OK . For each such ℘, we let R℘ be the localization
of pRP at ℘, and we let pR℘ be its t-adic (or equivalently, its ℘-adic) completion; this is a complete
discrete valuation ring. We write F℘ for the fraction field of pR℘. If P is on the closure of U , we
call such a ℘ a branch at P on U . Let B denote the set of all branches at points P P P (each of
which lies on some U P U). The fields F℘ (resp., rings pR℘) are referred to as the overlaps of the
corresponding patches FP , FU (resp., pRP , pRU ). For a branch ℘ at P on U , there is an inclusion
FP Ă F℘ induced by the inclusion pRP Ă pR℘, and also an inclusion FU Ă F℘ that is induced by
the inclusion pRU ãÑ pR℘. (See [HHK11], beginning of Section 4.)

The strategy for proving Theorem 2.9 relies on putting ourselves in the above context. Given
a class α P H ipF, µbi´1` q, we will choose a suitable regular model X , along with P and U, and
will construct splitting fields Lξ{Fξ for αFξ , for each ξ P PYU. Next, we will use these to obtain
an extension L{F that splits α locally. Finally, we will use a local-global principle from [HHK14]
to show that this extension in fact splits α. To handle the second of those three steps, we prove
some auxiliary results, starting with a general lemma.

Lemma 3.1. Let v1, . . . , vn be distinct non-trivial discrete valuations on a field E, with completions
Ei. Let d be a positive integer and for each i let Li be an étale Ei-algebra of degree d. Then there
exists an étale E-algebra L of degree d such that L bE Ei – Li for all i. If some Li is a field, then
so is L.

Proof. The complete discretely valued field Ei is infinite for each i, and so by Corollary 4.2(d)
of [FR17] there is a primitive element for the étale algebra Li over Ei, say with monic mini-
mal polynomial fipxq P Eirxs of degree d. For each i, there is an extension of vi to a discrete
valuation on the polynomial ring Eirxs, by taking the minimum of the valuations on the coeffi-
cients; we again write vi for that extension. Applying Krasner’s Lemma ([Lan94], Prop. II.2.4) to
each monic irreducible factor fij of fi P Eirxs (and then taking the maximum) gives a positive
integer ni such that for any monic polynomial hi P Eirxs of the same degree as some fij , if
viphi ´ fijq ą ni then hi is irreducible, and the polyomials hi and fij define the same field
extension of Ei. By a general form of Hensel’s Lemma (see Theorem 8 of [Bri06]), for each i
there is an integer mi such that for any monic polynomial gi P Eirxs of degree equal to that of
fi and with vipfi ´ giq ą mi, we may write gi as a product of monic polynomials gij P Eirxs of
the same respective degrees as fij and such that vipfij ´ gijq ą ni for all j.

The field E is dense in
ś

Ei by Theorem VI.7.2.1 of [Bou72]. Hence we may find a monic
polynomial f P Erxs of degree d such that vipfi ´ fq ą mi for all i. By the definition of mi, we
may write f as a product of monic factors gij over Ei that are respectively of the same degrees
as the polynomials fij and with vipfij ´ gijq ą ni. By the definition of ni, each factor gij of f
over Ei is irreducible and defines the same field extension of Ei as fij ; and so the étale algebras
induced by f and by fi over Ei are the same. Hence the étale E-algebra L defined by f induces
Li over Ei for all i. The last assertion is clear. �

Resuming our notation for semiglobal fields, we have the following.
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Lemma 3.2. Given F , X, and U as above, suppose that for each U P U we are given an étale FU -
algebra LU of (a common) degree d. Then there exists an étale F -algebra L (necessarily of degree d)
such that LbF FU – LU for all U . If some LU is a field, so is L.

Proof. For a point P P P, each branch ℘ at P lies on the closure of a unique U P U; and we
define an étale F℘-algebra L℘ :“ LU bFU F℘. Applying Lemma 3.1 to the field FP and the
discrete valuations corresponding to the branches at P , we obtain an étale FP -algebra LP such
that LP bF℘ – L℘ for each of the branches ℘ at P . Therefore, we have defined a system of étale
Fξ-algebras Lξ for ξ P PYU, together with isomorphisms LP bFP F℘ – LU bFU F℘ whenever ℘
is a branch at P on U . Since patching holds for étale algebras in this context (see, for example,
Proposition 3.7 and Example 2.7 in [HHK15b]), there is an étale F -algebra L with the desired
properties. The final assertion is clear. �

The next lemma is a variant of [HHK`19, Theorem 2.6].

Lemma 3.3. With K , k, F , and P as above, suppose that for each P P P, we are given an étale FP -
algebra LP of (a common) degree d prime to the characteristic of k, and assume that the integral closure
of pRP in LP is unramified over pRP . Then there exists an étale F -algebra L such that LbF FP – LP
for all P . If some LP is a field, so is L.

Proof. For each P P P, the normalization SP of pRP in LP is a degree d étale pRP -algebra. It
induces an étale pR℘-algebra S℘ for each branch ℘ at P ; and those in turn induce degree d
étale algebras L℘ over F℘ and λ℘ over κp℘q, where κp℘q is the residue field at ℘. The branches
℘ on U define distinct non-trivial discrete valuations on the function field kpUq of U , with
completions κp℘q. Applying Lemma 3.1, we obtain a degree d étale algebra ΛU over kpUq such
that ΛU bkpUq κp℘q – λ℘ for all branches ℘ on U . The normalization of krU s in ΛU is a
generically étale krU s-algebra ĀU that induces ΛU over kpUq. By lifting the defining coefficients
of ĀU from krU s to pRU , we obtain a generically étale pRU -algebra AU whose reduction is ĀU .
The algebra AU induces S℘ over pR℘, because both AUb pRU

pR℘ and S℘ lift the étale κp℘q-algebra
λ℘, and that lift is unique by [SGA71, Théorème I.5.5]. Thus LU :“ AUb pRU

FU is an étale algebra
over FU that induces L℘ :“ S℘ b pR℘

F℘ over F℘.
Thus we have étale algebras LP over FP for each P P P and LU over FU for each U P U such

that LP and LU induce the same F℘-algebra L℘ for ℘ a branch at P on U . By the patching result
[HH10, Theorem 7.1(iii)] (in the context of [HH10, Theorem 6.4] and [HHK15a, Proposition 3.3]),
there is an étale algebra L over F that induces LU over FU for all U P U and induces LP
over FP for all P P P. This yields the main assertion, and the final assertion of the lemma is
clear. �

4. Splitting unramified cohomology classes

In order to prove the main theorem, we will reduce to the case of unramified classes. Let L
be a field. For every discrete valuation v of L, we let κpvq denote its residue field. Recall that
for a prime ` ‰ charpκpvqq and i ě 1, there is a residue homomorphism resv : H ipL, µbi´1` q Ñ

H i´1pκpvq, µbi´2` q; e.g., see [GMS03, Section II.7.9, p. 18]. A class α P H ipL, µbi´1` q is called
unramified at v if resvpαq “ 0. If Y is a regular integral scheme with function field L and Y p1q is
the set of codimension one points of Y , then every y P Y p1q defines a discrete valuation vy of L.
We say that α as above is unramified at y if resvypαq “ 0. It is unramified on Y if it is unramified
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at all points of Y p1q; and we write H ipL, µbi´1` qnr,Y for the subgroup of H ipL, µbi´1` q consisting
of these unramified classes.

Lemma 4.1. With notation as above and U P U, let α P H ipFU , µ
bi´1
` q be unramified on Specp pRUq.

Then for some nonempty affine open subset U 1 Ď U , αFU 1 is in the image of H ip pRU 1 , µbi´1` q Ñ

H ipFU 1 , µbi´1` q.

Proof. Let Rh
η :“ lim

ÝÑVĎU
pRV (varying over the nonempty open subsets V Ď U ), and let F h

η

be its fraction field. Then by [HHK14], Lemma 3.2.1, Rh
η is a henselian discrete valuation ring

with residue field kpUq, and F h
η “ lim

ÝÑVĎU
FV . Since α is unramified, so is its image αFhη . Thus

by [Col95], beginning of Section 3.3, αFhη is the image of some rα P H ipRh
η , µ

bi´1
` q. Accord-

ing to [Sta22], Theorem 09YQ, H ipRh
η , µ

bi´1
` q “ lim

ÝÑVĎU
H ip pRV , µ

bi´1
` q and H ipF h

η , µ
bi´1
` q “

lim
ÝÑVĎU

H ipFV , µ
bi´1
` q. In particular, there is some nonempty open subset V Ď U so that rα

is the image of an element rα1 P H ip pRV , µ
bi´1
` q. The classes αFV and rα1FV then have the same

image in H ipF h
η , µ

bi´1
` q by construction. Again by Lemma 3.2.1 of [HHK14], F h

η “ lim
ÝÑWĎV

FW ,
and thus there exists a U 1 Ď V for which αFU 1 “ rα1FU 1

. But then U 1 is as desired. �

This next result gives a bound on the index in the case of unramified cohomology classes.

Proposition 4.2. Let K be a complete discretely valued field with residue field k, let ` be a prime
unequal to the characteristic of k, let F be the function field of a K-curve, and let X be a regular
model of F . Let i ě 1.

(a) If α P H ipF, µbi´1` q is unramified on X , then

indpαq | `ssd
i
`pkq`ssd

i
`pkpxqq.

(b) If B Ď H ipF, µbi´1` q is a finite collection of cohomology classes that are unramified on X ,
then

indpBq | `gssd
i
`pkq`gssd

i
`pkpxqq.

Proof. Both assertions are trivially true for i “ 1, by the paragraph following Theorem 2.9. So
we assume i ą 1 from now on.
We start by proving part (b). Let B “ tαj | j P Ju for some finite index set J . By Lemma 2.3,

it is sufficient to show that there is a finite field extension L{F that splits all classes in B and
such that the `-adic valuation of rL : F s is at most gssdi`pkq ` gssdi`pkpxqq. Let P be a finite
nonempty subset of the closed fiber containing all the singular points of X red

k , and let U be the
set of components of the complement X red

k r P.
Fix U P U. After deleting finitely many points from U and adding those to P, we may assume

that each pαjqFU is the image of some rαj P H
ip pRU , µ

bi´1
` q, by Lemma 4.1. This gives

H i
p pRU , µ

bi´1
` q – H i

pU, µbi´1` q Ñ H i
pkpUq, µbi´1` q, rαj ÞÑ ᾱj,

where the isomorphism is by Gabber’s affine analog of proper base change ([Sta22], Theo-
rem 09ZI). By definition of the generalized stable splitting dimension, there exists a finite field
extension lU of kpUq that splits all ᾱj and so that the `-adic valuation of rlU : kpUqs is at most
gssdi`pkpxqq. Let l

1
U be the separable closure of kpUq in lU . Then since rlU : l1U s is a power of

charpkq and thus prime to `, the separable extension l1U also splits all ᾱj (see Remark 2.2). Let
8



V Ñ U be the normalization of U in l1U , so that l1U “ kpV q. Hence each rαj maps to zero under
the composition

H i
p pRU , µ

bi´1
` q – H i

pU, µbi´1` q Ñ H i
pkpUq, µbi´1` q Ñ H i

pkpV q, µbi´1` q.

The collection of V ˆU U 1, where U 1 ranges over the non-empty open subsets of U , is cofinal
in the collection of non-empty open subsets V 1 Ď V . So by [Sta22, Theorem 09YQ],

H i
pkpV q, µbi´1` q “ lim

ÝÑ
V 1ĎV

H i
pV 1, µbi´1` q “ lim

ÝÑ
U 1ĎU

H i
pV ˆU U

1, µbi´1` q.

Hence there exists some U 1 Ď U for which each rαj maps to zero in H ipV ˆU U
1, µbi´1` q. Since

kpV q{kpUq is separable, V Ñ U is generically étale. Possibly after shrinking U 1, we may assume
that V ˆU U 1 Ñ U 1 is finite étale. Let I be the ideal defining U 1 in Specp pRU 1q. Then p pRU 1 , Iq is a
henselian pair, so V ˆUU 1 Ñ U 1 is the closed fiber of a finite étale cover SpecpSU 1q Ñ Specp pRU 1q

of the same degree by [Sta22], Lemma 09XI. Note that SpecpSU 1q is reduced and irreducible
since V is, and hence SU 1 is an integral domain. The commutative diagram

H ip pRU , µ
bi´1
` q H ip pRU 1 , µbi´1` q H ipU 1, µbi´1` q

H ipSU 1 , µbi´1` q H ipV ˆU U
1, µbi´1` q

–

–

then shows that each rαj maps to zero in H ipSU 1 , µbi´1` q; hence all αj are split by the fraction
field EU 1 of SU 1 , which is an extension of FU 1 whose degree has `-adic valuation at most
gssdi`pkpxqq. (Here the isomorphisms in the diagram are – again – by Gabber’s affine analog
of proper base change, [Sta22, Theorem 09ZI].) Note that each U 1 was obtained by removing a
finite number of closed points from the corresponding U P U. We add those points to P and
replace U with the set of components of the complement in X red

k of this possibly enlarged set
P (the elements of this new set U are exactly the sets U 1). Let d1 be the least common multiple
of the degrees rEU 1 : FU 1s where U 1 is in the (new) set U. Thus the `-adic valuation of d1 is at
most gssdi`pkpxqq. By taking direct sums of an appropriate number of copies of EU 1 for each
such U 1, we obtain étale FU 1-algebras LU 1 for all U 1 of degree d1. Then by Lemma 3.2, there is
an étale F -algebra L1 of degree d1 so that L1 bF FU 1 – LU 1 for all U 1 P U.

For P P P, each class αj,P :“ pαjqFP is unramified on Specp pRP q, since each αj is unramified.
Thus by [Sak20], Theorem 9, we may lift each αj,P to a class in H ip pRP , µ

bi´1
` q; that group is

isomorphic to H ipκpP q, µbi´1` q by proper base change ([SGA73], Exp. XII, Corollaire 5.5). By
definition of the generalized stable splitting dimension, we may find a common splitting field
lP {κpP q for the images of the αj,P , so that rlP : κpP qs has `-adic valuation at most gssdi`pkq.
As in the previous part, we may assume that lP {κpP q is separable. By [SGA71], Theorem I.6.1,
the extension lifts to a finite étale pRP -algebra SP of the same degree (using the completeness
of pRP ). Note that again by proper base change (loc. cit.), all αj,P split over SP . Since pRP is a
regular local domain, and since SP is finite étale over pRP and lifts lP , SP is a regular local
domain. Its fraction field is a finite extension EP {FP of the same degree, which splits all αj,P .
Let d2 be the least common multiple of the degrees rLP : FP s. By taking direct sums of an
appropriate number of copies of EP for each P P P, we obtain étale FP -algebras LP (for all P )
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of degree d2 which has `-adic valuation at most gssdi`pkq. Then by Lemma 3.3, there is an étale
F -algebra L2 of degree d2 so that L2 bF FP – LP for all P P P.

Consider the tensor product L1 bF L2; this is a direct sum of finite field extensions of F
since each Li is an étale F -algebra. Since the `-adic valuation of the degree of L1 bF L2 is at
most gssdi`pkpxqq` gssdi`pkq, the same is true for at least one of the direct summands, say L{F .
Let XL be the normalization of X in L, let PL be the preimage of P under the natural map
XL Ñ X , and let UL be the set of connected components of the complement of PL in the
reduced closed fiber of XL. For each P P P, L bF FP is the direct product of the fields LP 1 ,
where P 1 runs over the points of PL that map to P and LP 1 is the fraction field of the complete
local ring of XL at P 1; similarly for each U P U. Hence all pαjqLξ are split for every ξ P PLYUL.
By Theorem 3.1.5 of [HHK14], all αj are split over L. This completes the proof of part (b).
For part (a), note that if α is a single class unramified on a regular model X , then for splitness

over each U P U (resp. P P P), it suffices to take an extension whose degree has `-adic valuation
at most ssdi`pkpxqq (resp. ssdi`pkq), by definition of the stable splitting dimension. Hence the
above proof yields a splitting field L for α whose degree over F has `-adic valuation at most
ssdi`pkq ` ssdi`pkpxqq. Since indpαq is an `-power by Lemma 2.3, this implies

indpαq | `ssd
i
`pkq`ssd

i
`pkpxqq

as we intended to show. �

Remark 4.3. If k is finite in the context of Proposition 4.2, then the group H ipF, µbi´1` qnr,X

vanishes for all i ą 1. This follows from [Gro68, Théorème III.3.1, Corollaire II.1.10] for i “ 2;
from [Kat86, Proposition 5.2] for i “ 3; and because cdpF q “ 3 for i ě 4. Thus the proposition
applies only to the zero class in these situations, and so it has no actual content there. (In the
case of i “ 1, as noted at the beginning of the above proof, the assertion of Proposition 4.2 is
trivial for an arbitrary residue field k.)

5. Proof of the main theorem

We are now in a position to prove the main theorem.

Proof of Theorem 2.9. We first prove the second assertion. Let B Ď H ipF, µbi´1` q be a finite
collection of cohomology classes, and choose a regular model X of F . By [Gos19], Prop. 3.1,
there is a field extension L{F of degree `2 (resp. 23 “ 8) for ` odd (resp. ` “ 2) that splits the
ramification of B with respect to all discrete valuations on L whose restriction to F has a center
on X . The extension L{F corresponds to a morphism Y Ñ X for some regular model Y of
L; and αL P H ipL, µbi´1` qnr,Y for every α P B. By Proposition 4.2(b), there exists a finite field
extension rL{L that splits all elements of B and so that rrL : Ls has `-adic valuation at most
gssdi`pkq ` gssdi`pkpxqq. Thus the `-adic valuation of rrL : F s is at most

gssdi`pkq ` gssdi`pkpxqq `

#

2 if ` is odd
3 if ` “ 2.

To bound the generalized stable splitting dimension, we also need to consider cohomology
classes defined over finite field extensions E{F . Each such E is the function field of a curve
over KE , where KE is some finite extension of K and hence is a complete discretely valued field
whose residue field k1 is a finite extension of k. Now if B Ď H ipE, µbi´1` q is a finite collection of
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cohomology classes, the first part of the proof shows the existence of a common splitting field
L{E for the elements of B whose degree rL : Es has `-adic valuation at most

gssdi`pk
1
q ` gssdi`pk

1
pxqq `

#

2 if ` is odd
3 if ` “ 2

ď gssdi`pkq ` gssdi`pkpxqq `

#

2 if ` is odd
3 if ` “ 2,

which proves the desired bound for gssdi`pF q.
If B “ tαu is a one element set, Proposition 4.2(a) gives indpαLq | `

ssdi`pkq`ssd
i
`pkpxqq, and hence

indpαq | `m where

m “ ssdi`pkq ` ssdi`pkpxqq `

#

2 if ` is odd
3 if ` “ 2.

Since α was arbitrary, this shows that

sdi`pF q ď ssdi`pkq ` ssdi`pkpxqq `

#

2 if ` is odd
3 if ` “ 2.

As before, the same bound applies to finite extensions E{F , and hence

ssdi`pF q ď ssdi`pkq ` ssdi`pkpxqq `

#

2 if ` is odd
3 if ` “ 2,

as we wanted to show. �

6. Bounds for higher rank complete discretely valued fields

In this section, we bound gssdi`pF q for one-variable function fields F over higher rank com-
plete discretely valued fields – that is, fields kr arising in an iterated construction of fields
k0, k1, . . . , kr where kj is a complete discretely valued field with residue field kj´1, for all j ě 1.
We will do this using Theorem 2.9. We first determine the generalized stable splitting dimension
of higher rank complete discretely valued fields.

Lemma 6.1. Let k be a field and let ` ‰ charpkq be a prime. Let r ě 0, and let k0, k1, . . . , kr be a
sequence of fields with k0 “ k, and kj a complete discretely valued field with residue field kj´1 for all
j ě 1. Then for every finite collection B Ď H ipkr, µ

bi´1
` q, there exists an extension L{kr of degree

dividing `gssd
i
`pkq`r that splits all elements of B. In particular, gssdi`pkrq ď gssdi`pkq ` r. The same

statements remain true when B is replaced by a single class and gssdi`p´q is replaced with ssdi`p´q.

Proof. By induction, it suffices to prove the result with r “ 1. Set K “ k1, let v denote the
valuation on K , and let A be its valuation ring, with uniformizer π. By proper base change
([SGA73], Exp. XII, Corollaire 5.5), for any m ě 1 the mod π reduction map HmpA, µbm´1` q Ñ

Hmpk, µbm´1` q is an isomorphism, and so we may identify these two cohomology groups. Thus
by [GMS03, Proposition II.7.11, p. 18], each element α P H ipK,µbi´1` q may be written in the
form α1 ` pπq Y β, where α1 P H ipA, µbi´1` q; where pπq P H1pK,µ`q is the class defined by
π; and where β P H i´1pA, µbi´2` q is the class identified with resvpαq P H

i´1pk, µbi´2` q via the
11



above isomorphism. Consequently, if we base change to rK “ Kp `
?
πq to split the class pπq, we

find that pαq
rK “ pα

1q
rK .

Now let B “ tα1, . . . , αmu Ď H ipK,µbi´1` q be a finite collection, and let B “ tα11, . . . , α1mu,
where α1i denotes the image of α1i in H

ipk, µbi´1` q (and α1i is associated to αi as in the first part
of the proof). By definition, there exists a splitting field k1{k for B of degree dividing `gssd

i
`pkq.

To prove the first assertion of the lemma, it suffices to show that we may find a splitting field
rK 1{K of B whose degree divides `rk1 : ks. By hypothesis on the characteristic, each α1i is also
split by the separable closure of k in k1 (Remark 2.2), and so we may assume without loss of
generality that k1 is a separable extension of k. Consequently, we may lift k1 to an unramified
extension A1 of A of the same degree; let K 1 denote the fraction field of A1. Again using proper
base change ([SGA73], Exp. XII, Corollaire 5.5), the classes pα1iqA1 are split; so it follows that the
classes pα1iqK1 are split as well. Let rK 1 be a compositum of rK and K 1. Then pαiq rK “ pα

1
iq rK “ 0.

As r rK 1 : Ks | `rk1 : ks, the extension rK 1{K is as desired. The assertion on the generalized stable
splitting dimension is an immediate consequence.

If B consists of a single class, then the extension k1{k in the previous part can be chosen of
degree dividing `ssd

i
`pkq, and this yields the final assertion of the lemma. �

Remark 6.2. The bounds given in the previous lemma are not sharp. For example, consider
k “ Q and i “ 2 “ `. Given a collection of 2-torsion Brauer classes, we may find a quadratic
extension of Q which is non-split at every prime where at least one of the corresponding quater-
nion algebras is ramified. This extension will then split all the classes, so gssd2

2pQq “ 1, and
gssd3

2pQq ď gssd2
2pQq “ 1 by Proposition 2.7. Since the Pfister form xx´1,´1,´1yy does not

split over Q, gssd3
2pQq “ 1. Lemma 6.1 then gives gssd3

2pQpptqqqq ď 2. But more is true: since
gssd2

2pQq “ 1, Lemma 2.8 implies the stronger assertion that gssd3
2pQpptqqqq “ 1 (note that the

above Pfister form does not split over Qpptqq either).

Theorem 6.3. Let k be a field, let ` ‰ charpkq be a prime, let d “ gssdi`pkq, and let δ “
gssdi`pkpxqq. Suppose we are given a sequence k “ k0, k1, . . . , kr of fields with kj a complete discretely
valued field having residue field kj´1 for all j ě 1. Then

gssdi`pF q ď

#

δ ` r
2
pr ` 2d` 3q if ` is odd

δ ` r
2
pr ` 2d` 5q if ` “ 2

for any one variable function field F over kr. The same result holds for ssdi`pF q when d and δ are
replaced with ssdi`pkq and ssdi`pkpxqq, respectively.

Proof. Note that by definition of the invariants in question, it suffices to consider the case F “
krpxq. By Lemma 6.1, we know that gssdi`pkjq ď gssdi`pkq ` j “ d` j. Let ε be 2 if ` is odd and
let it be 3 if ` is even. By Theorem 2.9, we have gssdi`pkjpxqq ď gssdi`pkj´1q`gssdi`pkj´1pxqq`ε,
and so

gssdi`pkjpxqq ´ gssdi`pkj´1pxqq ď d` j ´ 1` ε.

Taking a sum of these inequalities for j “ 1, . . . , r yields

gssdi`pkrpxqq ´ gssdi`pk0pxqq ď rd`
rpr ´ 1q

2
` rε

and so

gssdi`pkrpxqq ď rd`
rpr ´ 1q

2
` δ ` rε “ δ `

r

2
pr ` 2d` 2ε´ 1q,
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as desired. The proof for the stable splitting dimension is similar (using the corresponding
assertions of Lemma 6.1 and Theorem 2.9). �

Next, we would like to examine the behavior of the splitting dimension as the cohomological
degree varies. While we don’t have the ability to control this well for general fields, we can make
some statements to this effect in the case that the cohomological dimension is bounded, using
that gssdm` pkq “ 0 for m ą cd`pkq.

Theorem 6.4. Let k be a field, let ` ‰ charpkq be a prime, and let c “ cd`pkq. Consider a sequence
of fields k “ k0, k1, . . . , kr where kj is a complete discretely valued field having residue field kj´1 for
all j ě 1. Set ε “ 2 if ` is odd and ε “ 3 if ` “ 2. Then

gssdc`m` pkrq ď maxp0, r ´m` 1q for m ě 1,

and

gssdc`m` pF q ď

$

’

&

’

%

1
2
rpr ´ 1q ` rε` gssdc`1` pkpxqq for m “ 1,

1
2
pr ´m` 1qpr ´mq ` pr ´m` 2qε for 2 ď m ď r ` 1,

0 for m ą r ` 1

for any one variable function field F over kr. The same assertions hold for the stable splitting dimen-
sion.

Proof. For the first assertion, we have cd`pkjq “ c ` j for j ě 0 by applying [Ser97, Proposi-
tion II.4.3.12] inductively. Thus gssdc`m` pkrq “ 0 if m ě r ` 1, as asserted in that case. On the
other hand, if m ď r then gssdc`m` pkm´1q “ 0. Hence gssdc`m` pkrq ď r ´m ` 1 by applying
Lemma 6.1 to the sequence of fields km´1, . . . , kr.
For the second assertion, again it suffices to consider the case when F “ krpxq. Note that the

case m ą r` 1 follows from the fact that cd`pkrpxqq “ c` r` 1 by [Ser97, Proposition II.4.2.11].
The case m “ r ` 1 follows from Theorem 2.9, using the fact that gssdc`m` pkr´1pxqq “ 0 “
gssdc`m` pkr´1q because of the cohomological dimension of these fields.

For the case 2 ď m ď r, observe that gssdc`m` pkm´1q “ 0 “ gssdc`m` pkm´2pxqq because
cdpkm´1q “ c ` m ´ 1 “ cdpkm´2pxqq, and similarly gssdc`m` pkm´2q “ 0. Thus Theorem 2.9
yields gssdc`m` pkm´1pxqq ď ε. Now write k1 “ km´1 and k1j “ km´1`j . Thus kr “ k1r`1´m.
Applying Theorem 6.3 with k1, c ` m, r ´ m ` 1 playing the roles of k, i, r there, we have
gssdc`m` pkrpxqq ď ε` r´m`1

2
pr´m` 1` 2¨0` 2ε´ 1q “ 1

2
pr´m` 1qpr´mq ` pr´m` 2qε.

For m “ 1, we have gssdc`1` pkq “ 0 since cd`pkq “ c. Theorem 6.3 with i “ c ` 1 yields
gssdc`1` pkrpxqq ď gssdc`1` pkpxqq ` r

2
pr ` 2¨0` 2ε´ 1q “ 1

2
rpr ´ 1q ` rε` gssdc`1` pkpxqq.

The same proof shows the assertions on the stable splitting dimension, using the correspond-
ing assertions in Lemma 6.1, Theorem 2.9, and Theorem 6.3. �

Remark 6.5. (a) The bounds on gssdi`pkrpxqq also apply to gssdi`pF q for any finite exten-
sion F of krpxq, since the generalized stable i-splitting dimension either stays the same
or decreases upon passing to a finite extension.

(b) In the case of ssdi`pkrpxqq, the bounds given in Theorem 6.4 are not in general sharp. For
example, consider the field kr “ Cpps1qq ¨ ¨ ¨ ppsrqq for r ě 1, and let ` be a prime. Then
Theorem 6.4 says that ssd2

`pkrpxqq ď gssd2
`pkrpxqq ď

1
2
pr ´ 1qpr ´ 2q ` rε, with ε “ 2

(resp., 3) if ` ‰ 2 (resp., “ 2). But according to [HHK09, Corollary 5.7], ssd2
`pkrpxqq ď r,

which is smaller.
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(c) Theorem 6.4 shows that if k is fixed and F is a one-variable function field over kr
as above, then our bound on gssdi`pF q (resp., gssdi`pkrq) depends only on r ´ i for i ą
cd`pkq`1 (resp., for i ą cd`pkq); moreover the bound increases with r and decreases with
i (and similarly for ssdi`). More precisely, as i increases, our bound on gssdi`pkrq decreases
linearly until it reaches 0, and our bound on gssdi`pkrpxqq decreases quadratically; and
the same happens as r decreases. For numerical examples, see the discussion following
Proposition 8.4.

(d) Suppose more generally that k is a field with virtual `-cohomological dimension equal
to c; i.e., there is a finite field extension k1{k such that cd`pk

1q “ c. Let F be a one-variable
function field over kr, and let F 1 “ Fk1. Then for i ě c ` 1, the value of gssdi`pF

1q is
bounded via the above theorem, and we have that gssdi`pF q ď v` ` gssdi`pF

1q, where v`
is the `-adic valuation of rk1 : ks.

7. Splitting for arithmetic surfaces

We have so far focused on the splitting of cohomology classes α P H ipF, µbi´1` q in the case
of a semiglobal field F ; i.e., a one-variable function field over a complete discretely valued field.
We can also consider the case of one-variable function fields F over a global field. Such a field
F has a model which is a two-dimensional regular integral scheme that is projective over either
a finite field or the ring of integers of a number field (of relative dimension one). In the latter
case, there is the following splitting result when i “ 3 and ` “ 2, due to a theorem of Suresh.

Theorem 7.1. Let X be a two-dimensional regular integral scheme that is projective over the ring of
integers of a number field. Let F be the function field of X , and let γ1, . . . , γN P H3pF, µb22 q. Then
there is a degree two field extension of F that splits each γj .

Proof. Theorem 3.2 of [Sur04] asserts that there exist f P Fˆ and βj P H2pF, µ2q for j “
1, . . . , N such that γj “ pfq Y βj for all j. Thus every γj is split by the degree two extension
F pf 1{2q of F . �

In the remainder of this section, our goal is to treat the analogous situation for the function
field F of a regular projective surface over a finite field, with ` ‰ charpF q. Specifically, in
Theorem 7.9, we show that a finite set of elements in H3pF, µb2` q can all be split by some
extension of degree `. This will then be used in the next section to obtain values of gssd in
situations related to global function fields, building also on the previous sections. We first need
some preliminary results.

Lemma 7.2. Let X be a normal integral scheme whose function field F contains a primitive `-th
root of unity for some prime number `. Let P1, . . . , Pr be closed points of X whose residue fields
are finite of order prime to `. Then there is a Galois field extension L{F of degree ` such that the
normalization Y of X in L has the property that the fiber of Y Ñ X over each Pi is étale and
consists of a single closed point of Y .

Proof. Choose an affine open subset U “ SpecpRq of X that contains the points Pi, and let mi

be the maximal ideal of R corresponding to Pi. Let k1i be the unique degree ` field extension of
the finite field ki :“ κpPiq. By the hypothesis on F , the field ki contains a primitive `-th root
of unity; and so k1i{ki is a Kummer extension, given by extracting an `-th root of some element
ai P ki that is not an `-th power in ki. Since the maximal ideals mi are pairwise relatively prime,
by the Chinese Remainder Theorem there is an element a P R whose reduction modulo mi is
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ai for all i. Here a is not an `-th power in F . The reduction of S :“ Rrxs{px`´ aq modulo miS
is k1i for all i, and so its fraction field L has the asserted property. �

Lemma 7.3. Let R be a regular local ring of dimension two with fraction field E, and let f, g be a
system of parameters at the maximal ideal of R. Let L{E be a cyclic field extension whose degree ` is a
prime number that is unequal to the residue characteristics of R and such that E contains a primitive
`-th root of unity. Let S be the normalization of R in L, and suppose that Srf´1s is unramified over
Rrf´1s. Then S is regular.

Proof. By the hypotheses, L{E is a Kummer extension; i.e., L “ Erh1{`s for some h P E that
is not an `-th power. After multiplying h by an `-th power, we may assume that h P R and so
h1{` P S. Since the regular local ring R is a unique factorization domain (by [AB59, Theorem 5]),
we may write h “ uhd11 ¨ ¨ ¨h

dn
n with n ě 0, where u is a unit in R, the elements hi P R are

irreducible and define distinct height one primes, and each di ě 1. After dividing h by an `-th
power, we may assume that 1 ď di ă ` for all i. Since the residue characteristics of R are
unequal to `, the subring Rrh1{`s Ď S is ramified over R precisely over the primes phiq.

If n “ 0 then the subring Rrh1{`s “ Rru1{`s Ď L is finite étale over R, and hence regular. So
it is equal to its normalization; i.e., its integral closure in its fraction field L, which is S. Thus S
is regular. Alternatively, if n ą 0, then since Srf´1s is unramified over Rrf´1s, and since f, h1
are both irreducible in R, it follows that n “ 1 and h1 “ vf for some unit v P R. Since d1 and
` are relatively prime, there exist integers a, b ą 0 with ad1 ´ b` “ 1. Hence ha “ uavad1f 1`b`;
and so S contains an `-th root of uavad1f 1`b` and thus also of f1 :“ uavad1f . The elements
f
1{`
1 , g form a system of parameters for the subring S 1 “ Rrf

1{`
1 s Ď S, which is therefore regular.

Since f1 “ ha{f b` is not an `-th power in E, the fraction field of S 1 has degree ` over E and so
is equal to L, the fraction field of S. But S is the normalization of R in L, and hence also that
of S 1 in L. Since the regular ring S 1 is normal, S “ S 1, and so S is regular. �

Remark 7.4. The conclusion of Lemma 7.3 fails if charpRq “ 0 but R has primes of residue
characteristic `, even though L{E is Kummer. For example, let R “ Z2rrx, yss{pxy ´ 2q, for
which x, y form a system of parameters. Let E be the fraction field of R, take ` “ 2, let
h “ 2y2 ` 1, and write L “ Erh1{2s “ Erws{pw2 ´ hq. Here h is a unit in R; but Rrh1{2s
is not étale over R, being purely inseparable over the primes pxq and pyq, where the residue
characteristic is 2. Moreover Rrh1{2s is not normal; its normalization S (in its fraction field L)
is obtained by adjoining to Rrh1{2s the element z “ pw ` 1q{y P L. As an abstract ring,
S “ Rrzs{pz2 ´ xz ´ 2q. This ring is ramified precisely over pxq, but it is not regular, having a
singularity at its maximal ideal px, yq. This phenomenon, which is contrary to the situation of
Lemma 7.3, leads to difficulties in treating the analog of Theorem 7.9 in the case of a projective
scheme of relative dimension one over the spectrum of the ring of integers of a number field,
with general `.

The following known result will be useful in proofs below, and we state it for ease of citation.

Lemma 7.5. Let K 1{K be an extension of discretely valued fields with residue field extension k1{k
and ramification index e. Let ` ‰ charpkq be a prime and let i be a non-negative integer. Then the
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diagram

H i`1pK,µbi` q H ipk, µbi´1` q

H i`1pK 1, µbi` q H ipk1, µbi´1` q

res

e

res

commutes, where the horizontal arrows are given by residues, the left hand vertical arrow is the
natural map, and the right hand vertical arrow is the product of e with the natural map.

Proof. This is a special case of [GMS03, Proposition II.8.2, p. 19]. �

These next lemmas will be used to verify properties needed in the proof of Theorem 7.9,
concerning the ramification and splitting behavior of cohomology classes under pullback.

Lemma 7.6. LetZ Ñ X be a morphism of regular integral two-dimensional schemes, with function
fields L{F . Let ` be a prime number unequal to the residue characteristics at the points of X and Z ,
and let γ P H3pF, µb2` q. If γ is unramified on X then its restriction γ1 P H3pL, µb2` q is unramified
on Z .

Proof. Let ζ be a codimension one point of Z . We wish to show that the residue of γ1 at ζ is
trivial. Let ξ be the image of ζ in X . Thus ξ has codimension one or two on X . In the former
case, γ has trivial residue at ξ, hence γ1 has trivial residue at ζ by Lemma 7.5.

Now assume that ξ has codimension two in X . The rows in the commutative diagram

H3pOZ ,ζ , µ
b2
` q H3pL, µb2` qq H2pκpζq, µ`q

H3pOX ,ξ, µ
b2
` q H3pF, µb2` qq

ś

xPSpecpOX ,ξq
p1q H2pκpxq, µ`q

res

res

are complexes, and the lower row is exact by [Sak20, Proposition 6]. Since γ is unramified on
X , it is the image of an element rγ P H3pOX ,ξ, µ

b2
` q, by the exactness. Let rγ1 P H3pOZ ,ζ , µ

b2
` q

be the image of rγ. So the image of rγ1 in H3pL, µb2` q is unramified at ζ . This latter image is γ1

by commutativity of the above square , so the conclusion follows. �

Given a field L, an arbitrary prime `, and non-negative integers i, j, Kato defined an abelian
group H ipL,Z{`Zpjqq that agrees with H ipL, µbj` q in the case that charpLq ‰ ` (see [Kat86,
page 143]). Moreover, as stated there, H2pL,Z{`Zp1qq is just the `-torsion subgroup of BrpLq,
and H1pL,Z{`Zq is the same as HomcontpGalpLab{Lq,Z{`Zq.

Lemma 7.7. Let X be a two-dimensional regular integral scheme that is projective over either a
finite field or the ring of integers of a number field that we assume to be totally imaginary. Let
γ P H3pF,Z{`Zp2qq for some prime number ` ‰ charpF q, where F is the function field of X . Let
C be a codimension one subscheme of X that contains the closures of the codimension one points of
X where γ is ramified. Consider the blow-up ĂX Ñ X of X at a finite set of regular points of C .
Then γ is unramified at the generic point of each exceptional divisor of the blow-up.

Proof. The field F has no ordered field structure, and so the hypotheses of [Kat86, Corollary to
Theorem 0.7] are satisfied. That result then provides an exact sequence

0 Ñ H3
pF,Z{`Zp2qq Ñ

à

ηP ĂX1

H2
pκpηq,Z{`Zp1qq Ñ

à

xP ĂX0

H1
pκpxq,Z{`Zp1qq Ñ Z{`Z Ñ 0,
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where the maps are given by residues, and where ĂXi is the set of dimension i points on ĂX .
Let ξ be one of the closed points of X that is blown up. By the regularity hypotheses,

the exceptional divisor E over ξ is a copy of P1
κpξq that meets the proper transform of C

at a single point rξ. Consider any closed point x0 P E other than rξ. Then except for the
generic point η0 P ĂX1 of E, the class γ is unramified at the dimension one points of ĂX
whose closure contains x0. So only one term in

À

ηP ĂX1
H2pκpηq,Z{`Zp1qq contributes to the

image of γ in H1pκpx0q,Z{`Zp1qq; viz., the one arising from η0 P ĂX1. Since the image of γ in
À

xP ĂX0
H1pκpxq,Z{`Zp1qq is 0, it follows that the contribution of that one term is also zero; i.e.,

α :“ resη0pγq is unramified at x0, where x0 is an arbitrary closed point of E other than rξ.
The complement of the κpξq-point rξ of E – P1

κpξq is isomorphic to the affine line over κpξq.
Since α is unramified over that complement, it is induced from a class in H2pκpξq,Z{`Zp1qq by
[GMS03, Theorem III.9.3, p.24]. But H2pκpξq,Z{`Zp1qq is the `-torsion subgroup of Brpκpξqq,
which is trivial since κpξq is a finite field. Hence α “ 0. �

Lemma 7.8. Let ` be a prime number, and let X be a two-dimensional regular integral scheme that
is projective over either a finite field or the ring of integers of a number field that we assume to be
totally imaginary if ` “ 2. Let Y be the normalization of X in a degree ` separable field extension
L{F , let C Ă X be a regular connected curve with function field κpCq, and let α be an `-torsion
element of BrpκpCqq. Suppose that at every closed point P of C at which α is ramified, π : Y Ñ X
is étale and π´1pP q is a single point. If η P Y lies over the generic point of C , then the pullback
ακpηq is split.

Proof. Let P be the set of closed points of C where α is ramified. Let D Ď π´1pCq be the closure
of η, with normalization D̃ Ñ D. The pullback ακpηq P BrpκpD̃qq “ BrpκpDqq of α P BrpκpCqq
is unramified away from π´1pPq. Since π is étale over each P P P, so is D Ñ C ; hence D is
regular there and rD Ñ D is an isomorphism over OP pCq. So D̃ Ñ C is étale over P , with just
one point in the fiber. The residue field extension there is the unique degree ` extension of the
finite field κpP q, so it agrees with the residue resP pαq P H

1pκpP q,Z{`Zq of the `-torsion class
α at the ramified point P . Thus ακpηq is unramified at each point over P, hence at every point
of rD. So the `-torsion class ακpηq lies in Brp rDq by [CTS21, Theorem 3.7.7]. But Brp rDq has trivial
`-torsion; e.g., see [Gro68, Remarque III.2.5(b)] if rD is a smooth projective curve over a finite
field, and see [Gro68, Proposition III.2.4] if instead rD “ SpecpOKq for a number field K that is
totally imaginary if ` “ 2. Hence ακpηq is split. �

We now come to the main result of this section.

Theorem 7.9. Let X be a two-dimensional regular integral scheme that is projective over a finite
field. Let F be the function field of X . Assume that F contains a primitive `-th root of unity for
some prime `, and let γ1, . . . , γN P H3pF,Z{`Zp2qq. Then there is a field extension of F of degree `
that splits each γj .

Proof. Let C be an effective divisor on X that contains all the codimension one points of X at
which at least one of the classes γj is ramified. By [Lip75, p. 193], there is a blow-up X 1 of X
such that the total transform of C is a strict normal crossings divisor (i.e., it has only normal
crossings and its components are regular). So after replacing X by X 1, we may assume that C
itself satisfies this condition. Let C1, . . . , Cm be the irreducible components of C , with function
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fields κpCiq, and let αi,j P BrpκpCiqq be the residue of γj at the generic point ξi of Ci. Thus αi,j
is `-torsion.

Let P be a finite set of closed points of X with at least one point on each Ci, such that P
contains all the singular (normal crossing) points of C and all the points at which any of the
classes αi,j is ramified. (In fact, all of these ramification points are singular points, by the exact
sequence at the beginning of the proof of Theorem 7.7.) Let L{F be the cyclic field extension
given by Lemma 7.2 applied to the points of P. Let Y Ñ X be the normalization of X in
L, and let B be its branch locus. Over each point of P the morphism Y Ñ X is étale and
the fiber consists of a single point; hence the same holds for the generic points ξi of the curves
Ci, and moreover the divisor B does not pass through any point of P. There is then a blow-up
ĂX Ñ X , centered only at points where B YC has a singularity other than a normal crossing,
such that the total transform of B Y C is a strict normal crossing divisor. Since the singular
points of C lie in P, none of those points lie on B and none of them are among the points that
are blown up. So the proper transform rC of C maps isomorphically onto C , with its irreducible
components mapping isomorphically onto respective components Ci of C .

We now reduce to the case that B Y C is itself a strict normal crossing divisor. To do this,
first observe that none of the cohomology classes γj are ramified at any of the exceptional
divisors of ĂX Ñ X , by Lemma 7.6 applied to the complement U Ď X of C , in the case
of an exceptional divisor lying over a point that does not lie on C ; and by Lemma 7.7 in the
case of an exceptional divisor lying over a (regular) point of C . Thus the proper transform rC

of C contains all the codimension one points of ĂX at which at least one of the classes γj is
ramified. Let ĂY Ñ ĂX be the normalization of ĂX in L; its branch locus is contained in the
total transform of B. So replacing Y Ñ X by ĂY Ñ ĂX , replacing C by its (isomorphic) proper
transform rC and similarly for its irreducible components Ci, replacing P Ă C by its inverse
image in rC , and replacing B by the branch locus of ĂY Ñ ĂX (which is contained in the total
transform of the original B), we may assume that B Y C is a strict normal crossing divisor in
X . In doing so, we retain the property that the cohomology classes γj are ramified only at
codimension one points of X that lie on (the new) C .

Our next step is to show that the given cohomology classes γj are each unramified at every
codimension one point of Y . To see this, note that since the given cohomology classes γj
are unramified at the codimension one points on the complement U Ď X of C , they remain
unramified at the codimension one points on its inverse image V Ď Y by Lemma 7.5. The other
codimension one points of Y lie over the generic points ξi of Ci for i “ 1, . . . ,m. As noted
above, there is a unique point ηi in Y over each ξi. Now Y Ñ X is étale over the points of
P with each of those fibers consisting of a single point; so this holds in particular at the points
where each αi,j is ramified. It then follows from Lemma 7.8 that pαi,jqηi is split. That is, γj is
unramified at the points ηi P Y lying over the generic points of the curves Ci, as well as at the
other codimension one points of Y ; and that completes this step.
Next, we claim that Y is regular at every closed point Q lying over a point P of C . To see

this, note that Y is regular at Q if P is not a point of B, since Y Ñ X is étale there and
X is regular. Now suppose that P P B. Then P is a nodal point of B Y C , and is a regular
point of B and of C , lying on a unique irreducible component of each. These components are
respectively defined in OX ,P by elements f, g that form a system of parameters. By Lemma 7.3,
OY ,Q is regular, proving the claim.
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Every singular point of Y lies in V by the above claim, and the two-dimensional normal
scheme Y has only finitely many singular points. Thus there is a blow-up Z Ñ Y centered
at those points of V , with Z regular. This is an isomorphism away from those finitely many
points, and Lemma 7.5 implies that the classes γj are unramified at every codimension one
point of Z that lies over a codimension one point of Y . The only other codimension one
points of Z are the generic points of the exceptional divisors of the blow-up Z Ñ Y , which
lie over closed points of V . Let W be the inverse image of U Ď X (or equivalently, of V Ď Y )
in Z . Applying Lemma 7.6 to W Ñ U , we find that the classes γj are unramified at the
codimension one points of W , and in particular at the exceptional divisors of Z Ñ Y . Since
Z is regular with function field L, [Kat86, Corollary to Theorem 0.7] asserts that the residue
map H3pL,Z{`Zp2qq Ñ

À

ζPZ1
H2pκpζq,Z{`Zp1qq is injective, where Z1 is the set of dimension

one points of Z . Hence the pullback of each γj to H3pL,Z{`Zp2qq is trivial, as needed. �

8. Applications

This section gives concrete applications of our bound. We start with an example involving
3-dimensional fields over the complex numbers. A result of de Jong ([deJ04]) shows that for the
function field of a complex algebraic surface, the index of a Brauer class (that is, an element
in degree 2 cohomology) must equal its period. In contrast, bounds for the index of a degree 3
cohomology class on the function field of a complex threefold are not known. On the other
hand, if we consider a somewhat simpler 3-dimensional field F , namely a finite extension of
the field Cpx, yqpptqq, it follows (for example from Lemma 6.1) that a class in H3pF, µb2` q will
have index at most `. If F is a finite extension of Cpyqpptqqpxq, the arithmetic is more subtle.
Using [deJ04] to show ssd2

`pCpx, yqq ď 1, Theorem 2.9 gives that ssd2
`pCpyqpptqqpxqq ď 3 or 4,

depending on the parity of `. On the other hand, de Jong’s theorem does not give us information
about gssd2

`pCpx, yqq, and hence the methods of [Gos19] and Proposition 2.7 do not give bounds
on the index of degree 3 cohomology classes for such fields. Using our new results, we obtain
the following bounds for degree 3 cohomology:

Proposition 8.1. Let k “ CpY q be the function field of a complex curve. Let ` be a prime.

(a) If F is a one-variable function field over kppsqq, then gssd3
`pF q ď 2 if ` is odd and

gssd3
`pF q ď 3 if ` “ 2.

(b) More generally, if Fr is a one-variable function field over kpps1qq ¨ ¨ ¨ ppsrqq for r ą 0, then
gssd3

`pF q ď pr
2 ` r ` 2q{2 if ` is odd and gssd3

`pF q ď pr
2 ` 3r ` 2q{2 if ` “ 2.

Proof. Note that k and kpxq have cohomological dimension 1 and 2 respectively, and thus
gssd3

`pkq “ gssd3
`pkpxqq “ 0. The first statement now follows directly from Theorem 2.9. The

second statement is by Theorem 6.4 (with m “ 2). �

In the situation above, Theorem 6.4 also gives bounds for gssdi`pFrq when 3 ă i ă r ` 3;
e.g., gssd4

`pFrq ď pr
2 ´ r ` 2q{2 if ` is odd and gssd4

`pFrq ď pr
2 ` rq{2 if ` “ 2. As i increases,

gssdi`pFrq decreases, and becomes 0 for i ě r ` 3. Bounds for gssd2
`pFrq were given in [Gos19].

We now move on to a class of examples related to global residue fields. Information about the
period-index problem for degree 2 cohomology classes when F is a one-variable function field
over a number field has been highly sought after. As of yet, bounds of this type are only known
contingent upon conjectures of Colliot-Thélène [LPS14]. Remarkably, the work of Lieblich [Lie15]
has shown that the index divides the square of the period in the case of a function field F of a
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surface over a finite field, giving ssd2
`pF q ď 2 in this case. Nevertheless, in neither situation do

we have information on gssd2
`pF q, and so again we are unable to apply [Gos19] or Proposition 2.7

to obtain bounds on the index of a cohomology class of degree higher than 3. On the other
hand, degree 3 cohomology over such fields is much more directly tractable, as was highlighted
in the work of Kato [Kat86]. Building on Theorems 7.1 and 7.9 above together with our previous
results, we obtain Proposition 8.3, Proposition 8.4, and the numerical examples that follow. First
we state a lemma.

Lemma 8.2. Let k be a global field, let E be the function field of a regular projective k-curve C , and
let ` be a prime unequal to charpkq. Then H3pE, µb2` q ‰ 0.

Proof. Let P P C be any closed point, and let k1 be its residue field. Since k1 is also a global
field, the `-torsion subgroup Brpk1qr`s Ď Brpk1q is non-trivial (e.g., by [GS17, Corollary 6.5.3,
Proposition 6.3.7] in the function field case and [Pie82, Theorem 18.5] in the number field case).
The period and index of a non-trivial element α P Brpk1qr`s both equal ` since k1 is a global
field. By [Sal84, Theorem 3.11, Corollary 5.3], as ` is prime, we may lift α to an index ` class
rα P BrpOC,P qr`s Ď BrpEqr`s “ H2pE, µ`q. Let t P OC,P Ă E be a uniformizer at P , and set
β “ rα Y ptq P H3pE, µb2` q. Then resvP pβq “ α ‰ 0 by [GMS03, Proposition II.7.11, p. 18],
using that the residue homomorphism resvP associated to the discrete valuation vP defined
by P is defined by passing through the completion ([GMS03, Section II.7.13, p. 19]). Hence
β P H3pE, µb2` q is nonzero. �

Proposition 8.3. Suppose k is a global field. If k is a function field, choose a prime ` ‰ charpkq.
If k is a number field, take ` “ 2. Let E be a one-variable function field over k. Then sd3

`pEq “
ssd3

`pEq “ gssd3
`pEq “ 1.

Proof. By Lemma 8.2, H3pE, µb2` q ‰ 0, hence 0 ă sd3
`pEq ď ssd3

`pEq ď gssd3
`pEq. Thus to

show that sd3
`pEq “ ssd3

`pEq “ gssd3
`pEq “ 1, it suffices to prove that gssd3

`pEq is at most 1.
Every finite extension of E is of the same form (i.e., a one-variable function field over a global
field). So it suffices to consider classes in H3pE, µb2` q, and not separately treat classes over finite
extensions E 1 of E. By Lemma 2.3, we may also assume that E contains a primitive `-th root
of unity, since adjoining this element produces a field extension of degree prime to `.
If k is a function field, then the desired assertion is now immediate from Theorem 7.9. In the

case where k is a number field and ` “ 2, it is immediate from Theorem 7.1. �

Our next examples concern function fields over higher local fields whose residue field is a
global field. Examples of such fields include F “ Kpxq where K “ Qppsqq or Fppyqppsqq, or
where K is the p-adic completion of Qpptq, or where K is a field of iterated Laurent series over
one of these fields.

Proposition 8.4. Let k be a global field, and let ` ‰ charpkq be a prime. In the number field case
assume ` “ 2. Suppose we have a sequence of fields k “ k0, k1, . . . , kr, with r ě 1, where kj is a
complete discretely valued field with residue field kj´1 for all j ě 1, and let F be a one-variable
function field over kr. Then

‚ if ` is odd, we have gssd3
`pF q ď 1` r

2
pr ` 3q,

‚ if ` is even, and k has no real places, we have gssd3
`pF q ď 1` r

2
pr ` 5q,

‚ if ` is even, and k has real places, we have gssd3
`pF q ď 2` r

2
pr ` 5q.
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Proof. Since F is a finite extension of krpxq, we have that gssd3
`pF q ď gssd3

`pkrpxqq. Hence it
suffices to prove the assertion for F “ krpxq.

If k is a number field (and ` “ 2), we can reduce to the case that k has no real places by
adjoining a square root of ´1 if necessary. This increases by 1 the power of ` in the degree of
the splitting extension, and so the bound on gssd3

`pF q increases by 1 (as in the assertion of the
third case). So we can now assume that the global field k has no real places, and in particular
that we are in one of the first two cases.

In the notation of Theorem 6.3 with i “ 3, we have d “ gssd3
`pkq “ 0, by [Ser97, Proposi-

tion II.4.4.13] in the case of a totally imaginary number field, and by [Ser97, Corollary in II.4.2] in
the global function field case. Moreover, δ “ gssd3

`pkpxqq “ 1 by Proposition 8.3. Theorem 6.3
thus gives the desired bounds. �

In the situation of Proposition 8.4, if k has no real places, then for r “ 1, 2, 3 we find
gssd3

`pF q ď 3, 6, 10, respectively, if ` is odd; and ď 4, 8, 13, respectively, if ` “ 2. Again,
Theorem 6.4 gives information on the higher cohomology groups. Note that c “ cd`pkq “ 2 as
in the above proof; moreover, gssd3

`pkpxqq “ 1 by Proposition 8.3. Hence for this field F with
r “ 1, 2, 3, Theorem 6.4 yields that gssd4

`pF q ď 2, 4, 7 respectively if ` is odd, and ď 3, 6, 10
respectively if ` “ 2. Observe that our bound for gssdi`pF q decreases as i increases. For example,
if r “ 3 then gssdi`pF q ď 10, 7, 4, 2, 0 for i “ 3, 4, 5, 6, 7 if ` is odd, and ď 13, 10, 6, 3, 0 if ` “ 2.
Note in particular the relationship between the bounds for gssdi`pF q as i increases and those as
r decreases (and see Remark 6.5(c) for a further discussion).
On the other hand, if k is a number field with a real place (and ` “ 2), then the bounds each

increase by 1 as above. For example, for r “ 1, 2, 3 in that case, we have gssd3
2pF q ď 5, 9, 14

and gssd4
2pF q ď 4, 7, 11, respectively. And for r “ 3 in that case, gssdi2pF q ď 14, 11, 7, 4, 1 for

i “ 3, 4, 5, 6, 7.
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