Math 114
Name: \qquad

Quiz 4
Section: \qquad

If $x^{6}+y^{6}=1$, find the maximum and minimum of $x^{4}+y^{4}$?

Solution:

Use Lagrange multiplier, the target function is

$$
f(x, y)=x^{4}+y^{4},
$$

and the restriction is

$$
g(x, y)=x^{6}+y^{6}-1=0 .
$$

So critical points should satisfy

$$
\nabla f=\lambda \nabla g
$$

which gives us two equations:

$$
\begin{align*}
4 x^{3} & =6 \lambda x^{5} \tag{1a}\\
4 y^{3} & =6 \lambda y^{5} \tag{1b}
\end{align*}
$$

Equation (1a) holds when $x=0$ or $x^{2}=\frac{2}{3 \lambda}$, equation (1b) holds when $y=0$ or $y^{2}=\frac{2}{3 \lambda}$. Plug each case into the restriction

$$
x^{6}+y^{6}-1=0,
$$

we get the following 8 pairs:

$$
(0, \pm 1),(\pm 1,0),\left(\pm 2^{-\frac{1}{6}}, \pm 2^{-\frac{1}{6}}\right) .
$$

Our target function f takes value 1 at the first 4 pairs, and takes value $\sqrt[3]{2}$ at the other 4 pairs. So 1 is the minimum and $\sqrt[3]{2}$ is the maximum.

Remark: Here we use that a continuous function must has maximum and minimum on a bounded closed region. Since we only find 2 extrema, the larger one must be the maximum and the smaller one must be the minimum.

