Name: \qquad Section: \qquad

If $x^{4}+y^{4}=1$, find the maximum and minimum of $x^{6}+y^{6}$?

Solution:

Use Lagrange multiplier, the target function is

$$
f(x, y)=x^{6}+y^{6},
$$

and the restriction is

$$
g(x, y)=x^{4}+y^{4}-1=0 .
$$

So critical points should satisfy

$$
\nabla f=\lambda \nabla g
$$

which gives us two equations:

$$
\begin{align*}
6 x^{5} & =4 \lambda x^{3} \tag{1a}\\
6 y^{5} & =4 \lambda y^{3} \tag{1b}
\end{align*}
$$

Equation (1a) holds when $x=0$ or $x^{2}=\frac{2 \lambda}{3}$, equation (1b) holds when $y=0$ or $y^{2}=\frac{2 \lambda}{3}$. Plug each case into the restriction

$$
x^{6}+y^{6}-1=0,
$$

we get the following 8 pairs:

$$
(0, \pm 1),(\pm 1,0),\left(\pm 2^{-\frac{1}{4}}, \pm 2^{-\frac{1}{4}}\right) .
$$

Our target function f takes value 1 at the first 4 pairs, and takes value $\frac{\sqrt{2}}{2}$ at the other 4 pairs. So 1 is the maximum and $\frac{\sqrt{2}}{2}$ is the minimum.

Remark: Here we use that a continuous function must has maximum and minimum on a bounded closed region. Since we only find 2 extrema, the larger one must be the maximum and the smaller one must be the minimum.

