Name: \qquad Section: \qquad

Consider the plane $A x+B y+C z=0$, where $A \neq 0$,
a) Find the distance from $(1,1,1)$ to this plane;
b) Find the angle between this plane and the $x y$-plane;
c) This plane intersects the $x y$-plane in a line, find the parametric equation for this line.

Solution:

a) Use the formula from a point to a plane:

$$
\frac{|\overrightarrow{P Q} \cdot \mathbf{n}|}{|\mathbf{n}|}
$$

where Q is the given point $(1,1,1)$ and P is any point on the plane, say $(0,0,0)$, then $\overrightarrow{P Q}=$ $(1,1,1)$, the normal vector of the plane is (A, B, C), plug into the formula, we get the distance is

$$
\frac{|(1,1,1) \cdot(A, B, C)|}{\sqrt{A^{2}+B^{2}+C^{2}}}=\frac{|A+B+C|}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

Remark: If you choose another point on the plane $A x+B y+C z=0$, you will get the same result.
b) The $x y$-plane is the one containing x-axis and y-axis, its equation is $z=0$, so its normal vector is $(0,0,1)$, and the angle between the planes is the angle between the normal vectors, which is

$$
\cos ^{-1} \frac{(0,0,1) \cdot(A, B, C)}{|(0,0,1)||(A, B, C)|}=\cos ^{-1} \frac{C}{\sqrt{A^{2}+B^{2}+C^{2}}}
$$

c) First find a point that on both of the planes, we can check $(0,0,0)$ is such a point. Then find the vector parallel to the line, and we can get this be taking cross product of the normal vector of the planes, so

$$
\mathbf{v}=(0,0,1) \times(A, B, C)=(-B, A, 0)
$$

so the parametric equation is

$$
x=-B t, y=A t, z=0
$$

