Divisibility of function field class numbers

Jeff Achter

j.achter@colostate.edu
Department of Mathematics
Colorado State University

25 April 2006
Galois theory workshop
Basic question

- Let E / \mathbb{F} be an elliptic curve over a finite field.
- Let ℓ be a prime number.
- What’s the chance that $\ell | \#E(\mathbb{F})$?
 - Actually, this was answered by Lenstra ($\mathbb{F} = \mathbb{F}_p$) and Howe ($\mathbb{F} = \mathbb{F}_q$).
 - In this talk, we’ll give an answer for:
 - Abelian varieties of arbitrary dimension
 - Jacobians of curves of arbitrary genus
Basic question

- Let E / \mathbb{F} be an elliptic curve over a finite field.
- Let ℓ be a prime number.
- What’s the chance that $\ell | \#E(\mathbb{F})$?
- Actually, this was answered by Lenstra ($\mathbb{F} = \mathbb{F}_p$) and Howe ($\mathbb{F} = \mathbb{F}_q$).
- In this talk, we’ll give an answer for:
 - Abelian varieties of arbitrary dimension
 - Jacobians of curves of arbitrary genus
Sneak preview

- Roughly, we show: The answer is approximately $\frac{1}{\ell}$.
- *Actually, it’s closer to* $\frac{1}{\ell-1}$

Let $\alpha(g, r)$ be the chance that a curve C of genus g satisfies $\text{Jac}(C)(\mathbb{F})[\ell] \cong (\mathbb{Z}/\ell)^r$.
Sneak preview

- Roughly, we show: The answer is approximately $\frac{1}{\ell}$.
- *Actually, it’s closer to* $\frac{1}{\ell-1}$
- Let $\alpha(g, r)$ be the chance that a curve C of genus g satisfies $\text{Jac}(C)(\mathbb{F})[\ell] \cong (\mathbb{Z}/\ell)^r$.
Sneak preview

<table>
<thead>
<tr>
<th>g</th>
<th>r</th>
<th>(\alpha(g, r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>(\frac{\ell^2 - \ell - 1}{\ell^2 - 1})</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>(\frac{1}{\ell})</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>(\frac{1}{\ell(\ell^2 - 1)})</td>
</tr>
</tbody>
</table>
Sneak preview

<table>
<thead>
<tr>
<th>g</th>
<th>r</th>
<th>(\alpha(g, r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>(\frac{\ell^6 - \ell^5 - \ell^4 + \ell + 1}{(\ell^2 - 1)(\ell^4 - 1)})</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>(\frac{\ell^3 - \ell - 1}{\ell^2(\ell^2 - 1)})</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>(\frac{\ell^3 - \ell - 1}{\ell^2(\ell^2 - 1)^2})</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>(\frac{1}{(\ell^2 - 1)\ell^4})</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>(\frac{1}{\ell^4(\ell^2 - 1)(\ell^4 - 1)})</td>
</tr>
</tbody>
</table>
Divisibility of function field class numbers

Jeff Achter

Introduction

Basic question

Motivation

Main theorem

Statement of theorem

Interlude on monodromy (I)

Proof for M_g

Interlude on monodromy (II)

Arbitrary families

Cyclic covers of \mathbb{P}^1

Sneak preview

<table>
<thead>
<tr>
<th>g</th>
<th>r</th>
<th>$\alpha(g, r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>$\frac{\ell^{12} - \ell^{11} - \ell^{10} + \ell^7 + \ell^5 + \ell^4 - \ell^3 - \ell - 1}{(\ell^2 - 1)(\ell^4 - 1)(\ell^6 - 1)}$</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$\frac{\ell^8 - \ell^6 + \ell^2 - \ell^5 + \ell - \ell^4 + 1}{\ell^3(\ell^2 - 1)(\ell^4 - 1)}$</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$\frac{\ell^8 - \ell^6 + \ell^2 - \ell^5 + \ell - \ell^4 + 1}{\ell^3(\ell^2 - 1)^2(\ell^4 - 1)}$</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>$\frac{\ell^5 - \ell^3 - 1}{\ell^7(\ell^2 - 1)^2}$</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>$\frac{\ell^5 - \ell^3 - 1}{\ell^7(\ell^2 - 1)^2(\ell^4 - 1)}$</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>$\frac{1}{(\ell^2 - 1)(\ell^4 - 1)\ell^9}$</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>$\frac{1}{\ell^9(\ell^2 - 1)(\ell^4 - 1)(\ell^6 - 1)}$</td>
</tr>
</tbody>
</table>
Sample spaces: example

\[E \quad y^2 = x(x - 1)(x - \lambda) \]

\[S = \mathbb{P}^1 - \{0, 1, \infty\} \quad \lambda \text{-line} \]

- Fiber over \(\lambda = \lambda_0 \) is

\[E_{\lambda_0} : y^2 = x(x - 1)(x - \lambda_0) \]

- Varying choice of \(\lambda_0 \in S(\mathbb{F}) \) varies elliptic curve \(E_{\lambda_0}/\mathbb{F} \).
Basic question: abelian varieties

- Let $X \to S$ be an abelian scheme over a finite field. What is
 $$\frac{|\{s \in S(F) : \ell | X_s(F)\}|}{|S(F)|}?$$
- Especially, $C \to S$ a relative curve. What is
 $$\frac{|\{s \in S(F) : \ell | \text{Jac}(C_s)(F)\}|}{|S(F)|}?$$

Think of this as a parametrized family of abelian varieties.
Let \(C/\mathbb{F} \) be a proper, smooth curve of genus \(g \geq 1 \).

Jacobian \(\text{Jac}(C) \) is a \(g \)-dimensional abelian variety which is:

- the smallest group variety containing \(C \).
- the variety parametrizing degree zero line bundles on \(C \).
- the variety such that \(\text{Jac}(C)(\mathbb{F}) \) is the ideal class group of \(\mathbb{F}(C) \).

For \(g = 1 \), canonical isomorphism \(\text{Jac}(E) \cong E \).
Applications

- **Algorithm for producing papers:**
 1. Identify algorithm or protocol over \mathbb{Z}/N.
 2. Realize it only uses addition or multiplication.
 3. Replace \mathbb{Z}/N or $(\mathbb{Z}/N)^\times$ with $\text{Jac}(C)(\mathbb{F})$.

- Some algorithms involve many choices of curve.
- Quantities like

 \[\ell | \text{#Jac}(C)(\mathbb{F}) \]

 important for security/run-time analysis.
Applications

- **Algorithm for producing papers:**
 1. identify algorithm or protocol over \mathbb{Z}/N.
 2. realize it only uses addition or multiplication.
 3. replace \mathbb{Z}/N or $(\mathbb{Z}/N)^\times$ with $\text{Jac}(C)(\mathbb{F})$.

- Some algorithms involve many choices of curve.

- Quantities like
 $$\text{how often does } \ell \mid \# \text{Jac}(C)(\mathbb{F})$$
 important for security/run-time analysis
Motivation: Cohen-Lenstra heuristics

- Cohen and Lenstra (1983) conjecturally describe asymptotics of class groups of quadratic imaginary number fields.
- Concretely, a (finite abelian) group H occurs in such class groups with frequency $|\text{Aut}(H)|^{-1}$.
- In particular, $\ell \mid \text{Cl}(\mathcal{O}_K)$ with frequency
 \[\frac{1}{|\text{Aut}(\mathbb{Z}/\ell)|} = \frac{1}{\ell - 1}. \]
Divisibility of function field class numbers

Jeff Achter

Introduction

Basic question

Motivation

Main theorem

Statement of theorem

Interlude on monodromy (I)

Proof for \mathcal{M}_g

Interlude on monodromy (II)

Arbitrary families

Cyclic covers of \mathbb{P}^1

Function-field Cohen-Lenstra

- Replace quadratic imaginary number field with quadratic \textit{function field}.
- Consider ideal class groups of fields ($f(x) \in \mathbb{F}[x]$)

$$K_{2,f} = \mathbb{F}(x)[y]/(y^2 - f(x)) \cong \mathbb{F}(x)[\sqrt{f(x)}].$$

- Equivalently, study hyperelliptic Jacobians.
- Friedman and Washington 1989 conjecture: An abelian \(\ell\)-group H occurs as $\text{Cl}(K)[\ell]$ with frequency proportional to $1/|\text{Aut}(H)|$. (They take a limit over all g.)

\textit{This conjecture is now a theorem (A.-)}
Consider $K_{d,f} = \mathbb{F}_q(X)[Y^d - f(X)], f(X) \in \mathbb{F}_q[X]$ monic and separable, $\deg f = n$.

- Friesen 2000 gathers data, bounds, for $(d, n) = (2, 4)$.
- Cardon and Murty 2001: Fix n odd. The number of f with $\ell | h(K_{2,f})$ is at least

$$q^{n(1/2 + 1/\ell)}.$$

Gives infinite supply of such function fields, but the number of such f is $\sim q^n$, thus

$$\lim_{q \to \infty} \frac{q^{n(1/2 + 1/\ell)}}{\#K_{2,f}/\mathbb{F}_q} = 0.$$
Previous work

Consider $K_{d,f} = \mathbb{F}_q(X)[Y^d - f(X)], f(X) \in \mathbb{F}_q[X]$ monic and separable, $\deg f = n$.

- Friesen 2000 gathers data, bounds, for $(d, n) = (2, 4)$.
- Cardon and Murty 2001: Fix n odd. The number of f with $\ell | h(K_{2,f})$ is at least
 $$q^n(\frac{1}{2} + \frac{1}{\ell}).$$
- Chakraborty and Mukhopadhyay 2004: n even. They produce at least $q^{n/\ell} / \ell^2$ f with $\ell | h(K_{2,f})$.
- Lee and Pacelli [2004-2006]: (Dedekind rings in) higher degree extensions of $\mathbb{F}(x)$, e.g., $K_{d,f}$.

Divisibility of function field class numbers

Jeff Achter

Introduction
Basic question
Motivation
Main theorem
Statement of theorem
Interlude on monodromy (I)
Proof for \mathcal{M}_g
Interlude on monodromy (II)
Arbitrary families
Cyclic covers of \mathbb{P}^1
Previous work – elliptic curves

- Lenstra 1987: the proportion of elliptic curves E/\mathbb{F}_p with $\ell||E(\mathbb{F}_p)|$ is about $1/(\ell - 1)$, if $p \equiv 1 \mod \ell$.
- Howe 1993: Generalizes to \mathbb{F}_q, computes proportion of E/\mathbb{F}_q with given group structure.
- Gekeler 2003: Computes number of elliptic curves over \mathbb{F}_p with given trace and determinant of Frobenius.

Results stated here for divisibility, but can extract group structure, too.
Divisibility of function field class numbers

Jeff Achter

Introduction
Basic question
Motivation
Main theorem
Statement of theorem
Interlude on monodromy (I)
Proof for M_g
Interlude on monodromy (II)
Arbitrary families
Cyclic covers of \mathbb{P}^1

Proportions

$X \to S \to \mathbb{F}_{q_0}$ an abelian scheme of relative dimension g.

$$\mathcal{P}(X \to S, \ell, \mathbb{F}_q) = \frac{|\{ s \in S(\mathbb{F}_q) : X_s[\ell](\mathbb{F}_q) \neq \{0\}\}|}{|S(\mathbb{F}_q)|}$$

$$\mathcal{Q}(X \to S, \ell, \mathbb{F}_q) = \frac{|\{ s \in S(\mathbb{F}_q) : X_s[\ell](\mathbb{F}_q) \cong (\mathbb{Z}/\ell)^{2g}\}|}{|S(\mathbb{F}_q)|}.$$
Proportions

- \(C \rightarrow S \rightarrow \mathbb{F}_{q_0} \) a relative smooth, proper curve.

\[
\mathcal{P}(C \rightarrow S, \ell, \mathbb{F}_q) = \mathcal{P}(\text{Jac}(C) \rightarrow S, \ell, \mathbb{F}_q)
\]
\[
\mathcal{Q}(C \rightarrow S, \ell, \mathbb{F}_q) = \mathcal{Q}(\text{Jac}(C) \rightarrow S, \ell, \mathbb{F}_q)
\]

Thus, \(\mathcal{P}(C \rightarrow S, \ell, \mathbb{F}_q) \) is the proportion of elements with class number a multiple of \(\ell \).
Main result – connected monodromy

Theorem

Suppose $X \to S$ has connected ℓ-adic monodromy group, $q_0 \equiv 1 \mod \ell$. If q sufficiently large, then:

$$Q(X \to S, \ell, \mathbb{F}_q) > \frac{1}{\ell g(2g+1)}.$$

If $\ell \in \mathbb{L}$, a set of primes of positive density, then:

$$P(X \to S, \ell, \mathbb{F}_q) > \frac{1}{\ell} - \mathcal{O}(1/\ell^2).$$

If monodromy group is known, get much more precise result.
Main result – unspecified monodromy

Theorem

Given $X \to S$, there exist β and ν such that if $q \equiv 1 \mod \ell^\beta$ is sufficiently large, then:

$$Q(X \to S, \ell, \mathbb{F}_q) > \frac{1}{\delta \ell g(2g+1)}.$$

If $\ell \in \mathbb{L}$, a set of primes of density $\delta > 0$, then:

$$P(X \to S, \ell, \mathbb{F}_q) > \frac{1}{\delta \ell} - \mathcal{O}(1/\ell^2).$$

There are bounds on β, ν and δ purely in terms of g.
Corollaries: ℓ-rank of class numbers often positive

In any reasonable family of function fields, the proportion of members for which the class group:

- has maximal ℓ-rank ($2g$) is positive;
- has an element of order ℓ is at least $1/\nu\ell$.

For universal families of curves, or of hyperelliptic curves, $\nu = 1$, $\delta = 1$, and the proportion members with an element of order ℓ in the class group is at least $1/\ell$.
Corollaries: Friedman-Washington conjecture

- Get a corrected, proven Friedman-Washington conjecture.
- Frequency with which H appears as ℓ-part of class group is inversely proportional to a “symplectic automorphism group” of H.

*Recall: Friedman-Washington say this frequency should be $1/|\text{Aut}(H)|$.
Corollaries: Cyclic covers of \mathbb{P}^1

- Let \mathcal{H}_n be space of monic separable polynomials of degree n.
- If $f \in \mathcal{H}_n(\mathbb{F})$, let $K_{d,f} = \text{Frac} \mathbb{F}[T, Y]/[Y^d - f(T)]$.
- $K_{d,f} = \mathbb{F}(C_{d,f})$, $C_{d,f}$ smooth, projective of genus $g = \frac{1}{2}((n - 1)(d - 1) + 1 - \gcd(d, n))$.
- If $q \gg \ell, d, n$ then:

$$\left| \left\{ f \in \mathcal{H}_n(\mathbb{F}_q) : \ell \mid \text{Cl}(K_{d,f}) \right\} \right| > \frac{1}{2d \ell g(2g + 1)}.$$

This yields a lower bound for the density of such extensions in families.
We know that

\[E[\ell](\overline{F}) \cong (\mathbb{Z}/\ell)^2. \]

\(P \in E[\ell](\overline{F}) \) is actually defined over \(F \) if it is fixed by the Frobenius map \(\text{Fr}_E \).

Our question reduces to:

Explain the distribution of \(\text{Fr}_E \) in \(\text{GL}_2(\mathbb{Z}/\ell) \) as the choice of \(E \) varies.
We know that

\[\text{Jac}(C)[\ell](\overline{F}) \cong (\mathbb{Z}/\ell)^{2g}. \]

A \(P \in \text{Jac}(C)[\ell](\overline{F}) \) is actually defined over \(F \) if it is fixed by the Frobenius map \(\text{Fr}_C \).

Our question reduces to:

Explain the distribution of \(\text{Fr}_C \) in \(\text{GL}_{2g}(\mathbb{Z}/\ell) \) as the choice of \(C \) varies.
A cover X of S corresponds to $\pi_1(S,s) \to \text{Aut}(X_s)$.

$$\pi_1(S, s) = \langle \gamma \rangle \to \text{Aut}(T_s)$$

try it
A variety S has a fundamental group, $\pi_1(S, s)$.

A cover $X \to S$ corresponds to

$$\pi_1(S, s) \longrightarrow \text{Aut}(X_s)$$

A local system \mathcal{F} of rank n Λ-modules corresponds to

$$\pi_1(S, s) \xrightarrow{\rho_\mathcal{F}} \text{GL}(\mathcal{F}_s) \cong \text{GL}_n(\Lambda)$$

The monodromy group G of \mathcal{F} is (the isomorphism class of the Zariski closure of) the image of this representation.
Frobenius

- \(x \in S(k) \) gives

\[
\pi_1(\text{Spec } k) \xrightarrow{x_*} \pi_1(S, \eta)
\]

- If \(k = \mathbb{F} \) finite, set

\[
\text{Fr}_{x, \mathbb{F}} = x_*(a \mapsto a^q).
\]

- Given \(\mathcal{F}/X \), get \(\rho_{\mathcal{F}}(\text{Fr}_{x, \mathbb{F}}) \in \text{GL}_n(\Lambda) \).
Suppose monodromy group G finite.

$W \subset G$ stable under conjugation.

Theorem [Katz, Deligne]

\[
\lim_{#F \to \infty} \frac{\# \{ x \in S(F) : \rho_F(Fr_{x,F}) \in W \} }{#S(F)} = \frac{#W}{#G}
\]

gap between left-hand and right-hand sides is $\sim \frac{1}{\sqrt{#F}}$.

*Throughout, we’ll assume $|F| \equiv 1 \text{ mod } \ell$.***
Equidistribution: examples

- In triple cover of S^1

$$\pi_1(S^1, s) \xrightarrow{\rho} \text{Aut}(T_s)$$

$$\mathbb{Z} \longrightarrow \text{Sym}(1, 2, 3)$$

image is $\{\text{id}, (123), (132)\}$.

For each g, $\rho^{-1}(g)$ has density $1/3$.

- Chebotarev: If L/K Galois, then local Frobenius elements are equidistributed in $\text{Gal}(L/K)$.
Strategy

- Let $X \to S$ be a family of abelian varieties. Glue $X[\ell]$ together to get local system of \mathbb{Z}/ℓ-vector spaces on S.

- $X_s[\ell] \neq 0 \iff \rho(Fr_s - id)$ is not invertible.
Strategy

Study the mod $-\ell$ monodromy representation

$$\pi_1(S, \bar{\eta}_S) \overset{\rho}{\rightarrow} \text{Aut}(X_{\bar{\eta}_S}[\ell]) \cong \text{GL}_{2g}(\mathbb{F}_\ell):$$

- Compute $G = M(X \rightarrow S, \ell) = \rho(\pi_1(S, \bar{\eta}_S))$
- Calculate $W = \{g \in G : 1 \text{ is an eigenvalue of } g\}$.

Then

$$\frac{|\{s \in S(\mathbb{F}) : \ell \mid X_s(\mathbb{F})\}|}{|S(\mathbb{F})|} \approx \frac{|W|}{|G|}.$$
Monodromy group of curves: Examples

The monodromy group is known when the family is:

- \mathcal{M}_g, the universal family of curves of genus g; $G \cong \text{Sp}_{2g}(\mathbb{Z}/\ell)$ [Deligne-Mumford].

- \mathcal{H}_g, the universal family of hyperelliptic curves of genus g; $G \cong \text{Sp}_{2g}(\mathbb{Z}/\ell)$ [JK Yu, A.-Pries]

- \mathcal{T}_g^α, a component of the universal family of cyclic cubic covers of \mathbb{P}^1 of genus g; $G^0 \cong U^\alpha(\mathbb{Z}/\ell)$ for a certain unitary group U^α [A.-Pries]
Counting in $\text{Sp}_{2g}(\mathbb{F}_\ell)$

Can write down a formula, by studying:
- structure of unipotent classes in $G(\overline{\mathbb{F}_\ell})$;
- how these classes behave over \mathbb{F}_ℓ;
- the structure of their centralizers;
- and induction.
Sneak preview

<table>
<thead>
<tr>
<th>g</th>
<th>r</th>
<th>$\alpha(g, r)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>$\frac{\ell^{12} - \ell^{11} - \ell^{10} + \ell^7 + \ell^5 + \ell^4 - \ell^3 - \ell - 1}{(\ell^2 - 1)(\ell^4 - 1)(\ell^6 - 1)}$</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>$\frac{\ell^8 - \ell^6 + \ell^2 - \ell^5 + \ell - \ell^4 + 1}{\ell^3(\ell^2 - 1)(\ell^4 - 1)}$</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>$\frac{\ell^8 - \ell^6 + \ell^2 - \ell^5 + \ell - \ell^4 + 1}{\ell^3(\ell^2 - 1)^2(\ell^4 - 1)}$</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>$\frac{\ell^5 - \ell^3 - 1}{\ell^7(\ell^2 - 1)^2}$</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>$\frac{\ell^5 - \ell^3 - 1}{\ell^7(\ell^2 - 1)^2(\ell^4 - 1)}$</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>$\frac{1}{(\ell^2 - 1)(\ell^4 - 1)(\ell^9)}$</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>$\frac{1}{\ell^9(\ell^2 - 1)(\ell^4 - 1)(\ell^6 - 1)}$</td>
</tr>
</tbody>
</table>
Summary

- If C is a hyperelliptic curve over a finite field \mathbb{F}, then the chance that $\ell | \# \text{Jac}(C)[\ell](\mathbb{F})$ is about
 \[
 \frac{1}{\ell - 1}.
 \]

- The proportion of hyperelliptic curves C for which $\text{Jac}(C)[\ell](\mathbb{F}) \cong H$ is the proportion of $\gamma \in \text{Sp}_{2g}(\mathbb{F}_\ell)$ for which
 \[
 \ker(\gamma - \text{id}) \cong H.
 \]

And that’s the Friedman-Washington conjecture!
Outline

1. Introduction
 - Basic question
 - Motivation

2. Main theorem
 - Statement of theorem
 - Interlude on monodromy (I)
 - Proof for \mathcal{M}_g

3. Interlude on monodromy (II)

4. Arbitrary families

5. Cyclic covers of \mathbb{P}^1
Analogy: E/K

Let E/K be an elliptic curve without complex multiplication. Serre proves:

- $T_\ell E = \lim_{n \to \infty} E[\ell^n](K)$ has $\text{Gal}(K)$-action.
- Characteristic polynomial of $\sigma \in \text{Gal}(K)$ acting on $T_\ell E$ is in $\mathbb{Z}[X]$, and is independent of ℓ.
- For $\ell \gg 0$, image of $\text{Gal}(K)$ in $\text{Aut}(T_\ell(E))$ is large.
Monodromy group: Philosophy

- $\pi : X \to S$ proper smooth.
- Consider the sheaf $R^n \pi_* \mathbb{Q}_\ell$.
- Get a system of representations

$$\pi_1(S, \bar{\eta}) \xrightarrow{\rho_\ell} \text{Aut}(H^i(X_{\bar{\eta}}, \mathbb{Q}_\ell))$$

which is compatible:
For $s \in S(\overline{\mathbb{F}}_q)$, the characteristic polynomial of $\rho_\ell(\text{Fr}_s/\mathbb{F}_q)$ has \mathbb{Z}-coefficients, and is independent of ℓ.

and, Frobenius elements generate the fundamental group
Conjecture Let \(\{ F_\ell \} \) be a compatible system of representations of \(\pi_1(S, s) \).

- There exists a number field \(E \) and a group \(G/F \) such that \(M(R^i \pi_* (\mathbb{Q}_\ell)) \otimes E_\lambda \cong G \otimes E_\lambda \).
- Moreover, the monodromy representation comes from a representation of \(G \) via base change.

Chin proves something very close to this for \(G^0 \).
Compatible systems

Conjecture Let \(\{ F_\ell \} \) be a compatible system of representations of \(\pi_1(S,s) \).

- There exists a number field \(E \) and a group \(G/F \) such that \(M(R^i\pi_*(\mathbb{Q}_\ell)) \otimes E_\lambda \cong G \otimes E_\lambda \).
- Moreover, the monodromy representation comes from a representation of \(G \) via base change.

Chin proves something very close to this for \(G^0 \).
Serre: E an elliptic curve without CM, then image of Galois in $T_\ell(E)$ is $\text{GL}_2(\mathbb{Z}_\ell)$ for almost all ℓ.

Conjecture Actual image of monodromy is hyperspecial in $G(E_\lambda)$, e.g., is $G(\mathcal{O}_\lambda)$, for almost all ℓ.

Larsen proves this for a set of primes of density one.
Arbitrary families

- Use a general result of Larsen on compatible systems of Galois representations:
- **Theorem** [Larsen] For fixed $X \to S$, there exist a group G and a set of rational primes \mathbb{L} of density one such that if $\ell \in \mathbb{L}$, then

$$M(X \to S, \ell) \cong G(\mathbb{Z}/\ell).$$
Next step

Let $F = F_\ell$.

Theorem

A n-dimensional vector space, G/F connected split semisimple, $G \to \text{GL}(V)$ a representation. If maximal $T_0 \subset G$ acts via a character which isn’t a power of a root, then:

$$\frac{|\{\gamma \in G(F) : \gamma \text{ fixes an element of } V\}|}{|G(F)|} > \frac{1}{\ell - 1} - \frac{\delta(n)}{\ell - 1}$$

where $\delta(n) = (n! + n)/(\ell - 1)$.
Sketch

- Fix maximally split torus $T_0 \subset G$.
- T_0 acts on V by character χ_0; at least $T_0(F)/(\ell - 1)$ elements fix something.
- Look for similar elements in other tori.
Example: GL_2

Two $\text{GL}_2(F)$-conjugacy classes of tori:

- $T_0 = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$
- $T_1 = \begin{pmatrix} \alpha & \beta \\ \epsilon \beta & \alpha \end{pmatrix}$, for fixed ϵ with $\sqrt{\epsilon} \notin F$.

Note that $T_1(F) \cong \{\alpha + \beta \sqrt{\epsilon}\} \cong F(\sqrt{\epsilon})^\times$.

T_1 is obtained from T_0 by twisting with $w := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.
Example: GL_2

- Suppose $\chi_0 = \det : \text{diag}(\lambda_1, \lambda_2) \mapsto \lambda_1 \lambda_2$.
- Gives \mathbb{F}-rational character of T_1:
 $$\gamma := \alpha + \beta \sqrt{\epsilon} \mapsto N_{\mathbb{F}(\sqrt{\epsilon})/\mathbb{F}}(\gamma).$$
- Find $|T_i|/(\ell - 1)$ elements in each T_i.
Example: GL_2

- Suppose χ_0 is $\text{diag}(\lambda_1, \lambda_2) \mapsto \lambda_1$.
- χ_0 does not twist to \mathbb{F}-rational character of T_1.
- Balanced by action of T_0 on V via $\chi_1 : \text{diag}(\lambda_1, \lambda_2) \mapsto \lambda_2$.

If ℓ-adic monodromy is hyperspecial in a split connected reductive group, then

$$\mathcal{P}(X \to S, \ell, q) > \frac{1}{\ell} - O(1/\ell^2).$$

Larsen: hyperspecial is density-one condition on primes ℓ.

What if monodromy group isn’t connected?
Disconnected monodromy

Lemma There exists étale Galois $\tilde{S} \rightarrow S$ and extension $\mathbb{F}_{q_1}/\mathbb{F}_{q_0}$, so that image of

$$\pi_1(\tilde{S}) \hookrightarrow \pi_1(S) \twoheadrightarrow \text{GL}(X_{\bar{\eta}}[\ell^{\infty}])$$

is connected.

- In fact, image is connected component of identity of original monodromy group.
- Existence of \tilde{S} for one ℓ is easy.
- Independence of ℓ due to Serre (and Larsen).
- Can find *a priori* bound on $\deg(S' \rightarrow S), [\mathbb{F}_{q_1} : \mathbb{F}_{q_0}]$.
Disconnected monodromy

Lemma There exists étale Galois \(\tilde{S} \to S \) and extension \(\mathbb{F}_{q_1}/\mathbb{F}_{q_0} \), so that image of

\[
\pi_1(\tilde{S}) \hookrightarrow \pi_1(S) \to \text{GL}(X_\eta[\ell^\infty])
\]

is connected.

- In fact, image is connected component of identity of original monodromy group.
- Existence of \(\tilde{S} \) for one \(\ell \) is easy.
- Independence of \(\ell \) due to Serre (and Larsen).
- Can find a priori bound on \(\deg(S' \to S) \), \([\mathbb{F}_{q_1} : \mathbb{F}_{q_0}] \).
Disconnected monodromy

Lemma

Suppose $X \to S$ has disconnected monodromy group $M(X \to S, \ell) = G$, $\phi : \tilde{S} \to S$ étale Galois of degree ν, $M(X \times \tilde{S} \to \tilde{S}, \ell) = G^0$, $W \subset G^0$, then

$$\left| \left\{ s \in S : \rho(Fr_{X_s,\mathbb{F}}) \in W \right\} \right| \left| S(\mathbb{F}_q) \right| > \frac{1}{\nu} \cdot \frac{|W|}{|G^0|}.$$

Ingredients:

- $\rho(Fr_{X_s,\mathbb{F}})$ constant in fibers of ϕ.
- Equidistribution for $\tilde{S} \to S$.
Disconnected monodromy

Lemma

Suppose $X \to S$ has disconnected monodromy group $M(X \to S, \ell) = G$, $\phi : \tilde{S} \to S$ étale Galois of degree ν, $M(X \times \tilde{S} \to \tilde{S}, \ell) = G^0$, $W \subset G^0$, then

$$\frac{|\{s \in S : \rho(Fr_X, \mathbb{F}) \in W\}|}{|S(\mathbb{F}_q)|} > \frac{1}{\nu} \cdot \frac{|W|}{|G^0|}.$$

Ingredients:

- $\rho(Fr_X, \mathbb{F})$ constant in fibers of ϕ.
- Equidistribution for $\tilde{S} \to S$.
Outline

1. Introduction
 - Basic question
 - Motivation

2. Main theorem
 - Statement of theorem
 - Interlude on monodromy (I)
 - Proof for \mathcal{M}_g

3. Interlude on monodromy (II)

4. Arbitrary families

5. Cyclic covers of \mathbb{P}^1
Cyclic covers of \mathbb{P}^1

Fix $d, n, \gcd(d, n) = 1$. Study

$$\mathcal{O}_{d,f} = \mathbb{F}_q[Y, T]/(Y^d - f(T))$$

$$h_{d,f} = |\text{Cl}(\mathcal{O}_{d,f})|$$

where $f \in \mathcal{H}_n(\mathbb{F}_q)$, \mathcal{H}_n being the space of monic, separable polynomials of degree n. How is $h_{d,f}$ mod ℓ distributed?
Cyclic covers of \mathbb{P}^1

In special cases, we can also work out the error term:

Theorem

For ℓ in a set of positive density, if $q \equiv 1 \mod \ell$, then

$$\frac{\left| \left\{ f(T) \in \mathcal{H}_n(F_q) : \ell | h(d, f) \right\} \right|}{\left| \mathcal{H}_n(F_q) \right|} > \frac{1}{2n} \left(\frac{1}{\ell} - \epsilon(g(d, n), \ell) \right) - \frac{2(2n)(n - 1)!}{\sqrt{q}} \left| \text{Sp}_{2g(d, n)}(\mathbb{Z}/\ell) \right|.$$

where $g(d, n) = \frac{1}{2}((n - 1)(d - 1) + 1 - \gcd(d, n))$.

Even without error term, strengthens work of Cardon, Murty, Chakraborty, Pacelli, Lee.
Cyclic covers of \(\mathbb{P}^1 \)

- Let \(C_{d,f}^{\text{aff}} = \text{Spec}(\mathcal{O}_{d,f}) \).
- Then \(C_{d,f}^{\text{aff}} \) is open in \(C_{d,f} \), a smooth, projective curve of genus \(g \). It’s a cyclic cover of the projective line.
- Hypothesis on \(d, n \) implies

\[
\text{Cl}(\mathcal{O}_{d,f}) \cong \text{Cl}(\mathbb{F}_q(C_{d,f})) \cong \text{Jac}(C_{d,f})(\mathbb{F}_q)
\]

So, study the family \(\text{Jac}(C_d) \to \mathcal{H}_n \).

Let \(G = M(\text{Jac}(\tilde{C}_d) \to \mathcal{H}_n, \ell) \).
Cyclic covers of \mathbb{P}^1

- Error in equidistribution is of the form $2|G|B/\sqrt{q},$ where B is such that if $\phi : Y \to \mathcal{H}_n$ Galois, étale, $p \nmid \deg \phi,$ then

$$\sigma_c(Y) := \sum_i \dim H^i_c(Y, \overline{\mathbb{Q}}_\ell) \leq \deg \phi \cdot B.$$

- Estimate B by pulling back to $\tilde{\mathcal{H}}_n$:

$$\tilde{\mathcal{H}}_n = \mathbb{A}^n - \{z_i = z_j : i \neq j\}(a_1, \cdots, a_n)$$

$$\mathcal{H}_n \quad \cdots \quad \prod(T - a_n)$$
Cyclic covers of \mathbb{P}^1

For sums of Betti numbers of covers of \tilde{H}_n, use general result on hyperplane arrangements:

Lemma

Let A be a hyperplane arrangement in a vector space V with complement $M(A)$. Let $\phi : Y \to M(A)$ be an irreducible étale tame Galois cover. Then

$$\sigma_c(Y) \leq (\deg \phi)\sigma_c(A).$$

Ingredients:

- Poincaré duality: $\sigma_c(Y) = \sigma(Y)$.
- Deligne and Illusie: If $\phi : Y \to X$ étale, then $\chi(Y) = (\deg \phi)\chi(X)$, where $\chi(U) = \sum_i (-1)^i h^i(U)$.
- Induction on $\dim V$.
Cyclic covers of \mathbb{P}^1

For sums of Betti numbers of covers of \tilde{H}_n, use general result on hyperplane arrangements:

Lemma

Let A be a hyperplane arrangement in a vector space V with complement $M(A)$. Let $\phi : Y \to M(A)$ be an irreducible étale tame Galois cover. Then

$$\sigma_c(Y) \leq (\deg \phi)\sigma_c(A).$$

Ingredients:

- Poincaré duality: $\sigma_c(Y) = \sigma(Y)$.
- Deligne and Illusie: If $\phi : Y \to X$ étale, then $\chi(Y) = (\deg \phi)\chi(X)$, where $\chi(U) = \sum_i (-1)^i h^i(U)$.
- Induction on $\dim V$.
Hyperplane complements

- Let V be an n-dimensional vector space.
- Let $\mathcal{A} = \{X_1, \cdots, X_r\}$ be a finite set of hyperplanes in V.
- Goal: understand cohomology ring of $\mathcal{M}(\mathcal{A}) = V - \bigcup_{X \in \mathcal{A}} X$.

Let V be an n-dimensional vector space.
Let $\mathcal{A} = \{X_1, \cdots, X_r\}$ be a finite set of hyperplanes in V.
Goal: understand cohomology ring of $\mathcal{M}(\mathcal{A}) = V - \bigcup_{X \in \mathcal{A}} X$.

Construct $\mathcal{L}(A)$, lattice of intersections of elements of A, ordered by inclusion.

Let μ be the Möbius function of $\mathcal{L}(A)$.

The rank of an element $X \in \mathcal{L}(A)$ is

$$r_A(X) = \text{codim}_V(X).$$

Cohomology groups of $\mathcal{M}(A)$ given by

$$\dim H^i(\mathcal{M}(A), \overline{\mathbb{Q}}_\ell) = (-1)^i \sum_{X \in \mathcal{L}(A): r_A(X)=i} \mu(X).$$

In particular, note that i^{th} Betti number depends only on elements of $\mathcal{L}(A)$ with codimension at most i in V.
Construct $\mathcal{L}(A)$, lattice of intersections of elements of \mathcal{A}, ordered by inclusion.

Let μ be the Möbius function of $\mathcal{L}(A)$.

The rank of an element $X \in \mathcal{L}(A)$ is $r_{\mathcal{A}}(X) = \text{codim}_V(X)$.

Cohomology groups of $\mathcal{M}(A)$ given by

$$\dim H^i(\mathcal{M}(A), \overline{\mathbb{Q}}_\ell) = (-1)^i \sum_{X \in \mathcal{L}(A): r_{\mathcal{A}}(X) = i} \mu(X).$$

In particular, note that i^{th} Betti number depends only on elements of $\mathcal{L}(A)$ with codimension at most i in V.
Let $H \subset V$ be a hyperplane.

Define $A_H = \{ H \cap X : X \in A \}$, an arrangement in H.

If H is generic, $X \in \mathcal{L}(A)$ of positive dimension, then

$$r_A(X) = r_{A_H}(X_H);$$

$\mathcal{L}(A_H)$ obtained from $\mathcal{L}(A)$ by removing top row.

Conclusion: If $H \subset V$ generic, then

$$h^i(\mathcal{M}(A_H), \mathbb{Q}_\ell) = \begin{cases} h^i(\mathcal{M}(A), \mathbb{Q}_\ell) & 0 \leq i \leq n - 1 \\ 0 & i = n. \end{cases}$$
Divisibility of function field class numbers

Jeff Achter

Introduction
Basic question
Motivation
Main theorem
Statement of theorem
Interlude on monodromy (I)
Proof for M_g
Interlude on monodromy (II)
Arbitrary families
Cyclic covers of \mathbb{P}^1

Diagram:

$L(A)$

Points

Lines

Codim 2

Hyperplanes

Ambient space

\mathbb{A}^n

$P_1 \ldots P_{r_0}$

$L_1 \ldots L_{r_1}$

$X_1 \cap X_2 \ldots X_{r-1} \cap X_r$

$X_1 \cap X_3 \ldots X_{r-2} \cap X_r$

$X_1 \cap X_4 \ldots X_{r-3} \cap X_r$

\ldots

$X_{r-1} \cap X_r$
Divisibility of function field class numbers

Jeff Achter

Introduction
Basic question
Motivation

Main theorem
Statement of theorem
Interlude on monodromy (I)
Proof for M_g

Interlude on monodromy (II)

Arbitrary families

Cyclic covers of \mathbb{P}^1

$\mathcal{L}(A_H)$

$L_1 \cap H \quad L_2 \cap H \ldots \quad L_{r_1} \cap H$

\vdots

$X_{12} \cap H \quad X_{13} \cap H \quad X_{14} \cap H \quad \ldots \quad X_{r-1} \cap X_r$

$X_1 \cap H \quad X_2 \cap H \quad X_3 \cap H \quad X_4 \cap H \ldots \quad X_r \cap H$

H

points
codim 2
hyperplanes
ambient space
Conclusion

- Function field class numbers are often divisible.
- Thanks!
Conclusion

- Function field class numbers are often divisible.
- Thanks!