Benjamin Schak

Feb. 7th 2005

- T/F 1. If $\mathbf{w} \neq \mathbf{0}$, $\mathbf{v} \neq \mathbf{0}$, and $\mathbf{w} \times \mathbf{v} = \mathbf{z}$, then $\mathbf{v} \times \mathbf{w} = \mathbf{z}$. \diamond False. Counterexample: If $\mathbf{w} = \mathbf{i} \neq \mathbf{0}$ and $\mathbf{v} = \mathbf{j} \neq \mathbf{0}$, then $\mathbf{w} \times \mathbf{v} = \mathbf{k}$ but $\mathbf{v} \times \mathbf{w} = -\mathbf{k}$. Note that, since $\mathbf{w} \times \mathbf{v} = -\mathbf{v} \times \mathbf{w}$, any non-parallel \mathbf{w} , \mathbf{v} constitute a counterexample. \blacklozenge
- **T/F 2.** If a non-zero vector **v** lies in a plane *P*, and **w** is a non-zero vector not in *P*, then **w** is orthogonal to *P* only if $\mathbf{v} \cdot \mathbf{w} = 0$. \Diamond

True. Proof: We must show that $\mathbf{w} \perp P$ implies that $\mathbf{v} \cdot \mathbf{w} = 0$. $\mathbf{w} \perp P$ means that \mathbf{w} is orthogonal to every vector in *P*. Since $\mathbf{v} \in P$, \mathbf{w} is then orthogonal to \mathbf{v} . Therefore, $\mathbf{v} \cdot \mathbf{w} = 0$. \blacklozenge

- T/F 3. The cross product of any two unit vectors is also a unit vector. ◊
 False. Counterexample: i × i = 0. Note that any non-orthogonal unit vectors also constitute a counterexample. ♦
- T/F 4. If A, B, C are non-zero vectors in \mathbb{R}^3 and $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{0}$, then A, B, and C are parallel. \Diamond

False. Counterexample: If $\mathbf{A} = \mathbf{i} \neq \mathbf{0}$, $\mathbf{B} = \mathbf{j} \neq \mathbf{0}$, and $\mathbf{C} = \mathbf{k} \neq \mathbf{0}$, then $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{i} \times (\mathbf{j} \times \mathbf{k}) = \mathbf{i} \times \mathbf{i} = \mathbf{0}$. Note that if $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{0}$ then \mathbf{A} is in fact perpendicular to both \mathbf{B} and \mathbf{C} .

T/F 5. For any vectors **u** and **v** in \mathbb{R}^3 , $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} > 0$.

False. Since $\mathbf{u} \times \mathbf{v}$ is perpendicular to \mathbf{u} , $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}$ is always *equal* to 0.

MC 1. The parametric equations of a curve are $x = t^2$, $y = t^4$, $t \ge 0$; the Cartesian equation is: a) $y = x^2$; b) $y = \sqrt{x}$; c) $y = 2x^2$; d) $y = \sqrt{2x}$; e) $y = x^2/2$; f) $y = \sqrt{x/2}$.

Since $y = t^4 = (t^2)^2 = x^2$, the correct answer is a) $y = x^2$.

MC 2. What is the slope of the tangent to the curve $x = \sin t$, $y = \cos t$ when $t = \pi/3$? a) $1/\sqrt{2}$; b) $1/\sqrt{3}$; c) $-1/\sqrt{2}$; d) $-1/\sqrt{3}$; e) $\sqrt{2}$; f) $-\sqrt{3}$. Since

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$
$$= \frac{-\sin t}{\cos t},$$

the slope of (the tangent to) the curve at $t = \pi/3$ is

$$\frac{-\sin(\pi/3)}{\cos(\pi/3)} = -\frac{\sqrt{3}/2}{1/2} = -\sqrt{3}.$$

Hence, the correct answer is f) $-\sqrt{3}$.

MC 3. Find the length of the curve whose parametric equations are $x = \ln \cos t$, y = t, $0 \le t \le \pi/4$. a) $\ln(2\sqrt{2}+1)$; b) $\ln(\sqrt{2}+1)$; c) $\ln(2\sqrt{2}+2)$; d) $\ln(\sqrt{2}+1)$; e) $\ln(2\sqrt{3}+1)$; f) $\ln(\sqrt{3}+2)$.

The length of a parametrized curve is

$$L = \int_a^b \sqrt{(dx/dt)^2 + (dy/dt)^2} \, dt.$$

Applying this formula with $dx/dt = -\sin t/\cos t = -\tan t$ and dy/dt = 1 gives

$$L = \int_0^{\pi/4} \sqrt{\tan^2 t + 1} dt$$
$$= \int_0^{\pi/4} \sqrt{\sec^2 t} dt$$
$$= \int_0^{\pi/4} \sec t dt.$$

(The last step is valid since sec $t \ge 0$ between t = 0 and $\pi/4$.) From here there are two methods to evaluate this integral.

Method 1: This is my method, and involves dogged substitutions. The sub-

Calculus II

stitutions I use are $u = \cos t$, $v = 1 - u^2$, and $w = \sqrt{v}$.

$$\begin{split} L &= \int_{0}^{\pi/4} \sec t \, dt \\ &= -\int_{1}^{1/\sqrt{2}} \frac{du}{u\sqrt{1-u^{2}}} \\ &= \frac{1}{2} \int_{0}^{1/2} \frac{dv}{(1-v)\sqrt{v}} \\ &= \frac{1}{2} \int_{0}^{1/\sqrt{2}} \frac{2}{1-w^{2}} \, dw \\ &= \frac{1}{2} \int_{0}^{1/\sqrt{2}} \frac{1}{1-w} + \frac{1}{1+w} \, dw \\ &= \frac{1}{2} (-\ln|1-w| + \ln|1+w|) \big|_{0}^{1/\sqrt{2}} \\ &= \frac{1}{2} \Big(-\ln\Big(1 - \frac{1}{\sqrt{2}}\Big) + \ln\Big(1 + \frac{1}{\sqrt{2}}\Big) \Big) \\ &= \frac{1}{2} \Big(\ln\frac{(\sqrt{2}+1)/\sqrt{2}}{(\sqrt{2}-1)/\sqrt{2}} \Big) \\ &= \frac{1}{2} \ln\frac{(\sqrt{2}+1)(-\sqrt{2}-1)}{-1} \\ &= \ln\sqrt{3+2\sqrt{2}}. \end{split}$$

Now, $(1 + \sqrt{2})^2 = 3 + 2\sqrt{2}$, so

$$L = \ln \sqrt{3 + 2\sqrt{2}}$$
$$= \ln(1 + \sqrt{2}).$$

Hence, the correct answer is d) $\ln(\sqrt{2} + 1)$.

Method 1': This method rolls the three substitutions of Method 1 into one less obvious substitution $u = \sin t$.

$$L = \int_0^{\pi/4} \sec t \, dt$$

= $\int_0^{\pi/4} \frac{\cos t}{1 - \sin^2 t} \, dt$
= $\int_0^{1/\sqrt{2}} \frac{du}{1 - u^2}.$

From this point forward, Method 1' is the same as Method $1. \blacklozenge$

Feb. 7,th 2005

Method 2: I don't think anyone short of a true genius would know this method without seeing it at least once before. It uses the substitution $u = \sec t + \tan t$.

$$L = \int_{0}^{\pi/4} \sec t \, dt$$

= $\int_{0}^{\pi/4} \frac{\sec t (\sec t + \tan t)}{\sec t + \tan t} \, dt$
= $\int_{0}^{\pi/4} \frac{\sec t \tan t + \sec^2 t}{\sec t + \tan t} \, dt$
= $\int_{1}^{1+\sqrt{2}} \frac{du}{u}$
= $(\ln|u|) \Big|_{1}^{1+\sqrt{2}}$
= $\ln|1 + \sqrt{2}| = \ln(1 + \sqrt{2}).$

Hence, the correct answer is d) $\ln(\sqrt{2}+1)$.

MC 4. Find the Cartesian equation for the curve given by the polar equation $r \sin \theta + r^2 \cos^2 \theta + r^2 = 0$. a) $2x + 2x^2 + y^2 = 0$; b) $x^2 + y + y^2 = 0$; c) $2x^2 + y + y^2 = 0$; d) $x^2 + 2y + 2y^2 = 0$; e) $x^2 + x + y^2 = 0$; f) $x + x^2 + 2y^2 = 0$. \Diamond Substituting $r \sin \theta = y$, $r \cos \theta = x$, and $r^2 = x^2 + y^2$, we get

$$y + x^{2} + (x^{2} + y^{2}) = 0$$

 $2x^{2} + y + y^{2} = 0.$

Hence, the correct answer is c) $2x^2 + y + y^2 = 0.$

MC 5. Find the area of the region inside the polar curve $r = \sin \theta$.

Method 1: The picture on the exam sheet suggests that this curve is a circle of radius 1/2 centered at (x, y) = (0, 1/2). Indeed, we can prove this by converting to Cartesian coordinates:

$$r = \sin \theta$$
$$r^{2} = r \sin \theta$$
$$x^{2} + y^{2} = y$$
$$x^{2} + y^{2} - y + \frac{1}{4} = \frac{1}{4}$$
$$x^{2} + \left(y - \frac{1}{2}\right)^{2} = \left(\frac{1}{2}\right)^{2}.$$

The area of a circle of radius *r* is πr^2 , so the area of this circle is $\pi(1/2)^2 = \pi/4$. Hence, the correct answer is e) $\pi/4$.

4

Method 2: By inspection, one loop of this curve is parametrized by $r = \sin \theta$, $0 \le \theta \le \pi$. Then by the polar formula for area, the area within this curve is

$$\int_0^{\pi} \frac{r^2}{2} d\theta = \int_0^{\pi} \frac{\sin^2 \theta}{2} d\theta$$
$$= \int_0^{\pi} \frac{1}{2} \cdot \frac{1 - \cos 2\theta}{2} d\theta$$
$$= \int_0^{\pi} \frac{d\theta}{4} - \frac{1}{4} \int_0^{\pi} \cos 2\theta \, d\theta$$
$$= \frac{\pi}{4} - \frac{1}{8} (\sin 2\theta) \big|_0^{\pi}$$
$$= \frac{\pi}{4}.$$

(If you haven't memorized the identity $\sin^2 \theta = (1 - \cos 2\theta)/2$, you can get it by solving the simultaneous equations $\sin^2 \theta + \cos^2 \theta = 1$, $\cos^2 \theta - \sin^2 \theta = \cos 2\theta$ for $\sin^2 \theta$.) Hence, the correct answer is e) $\pi/4$.

MC 6. Find the area of the shaded region inside both of the polar curves $r = 4 \sin \theta$ and $r = 4 \cos \theta$. \Diamond

Method 1: By the argument of Method 1 of problem 5, the two curves are circles of radius 2, one centered at the point $P_1 = (x, y) = (2, 0)$ and $P_2 = (x, y) = (0, 2)$. The circles (call the one centered on the *x*-axis C_1 and the other C_2) meet at the origin *O* and at the point Q = (x, y) = (2, 2). The given region is the (disjoint union) of the segment *OQ* of C_1 and the segment *OQ* of C_2 .

The area of the segment OQ of C_1 is the difference between the area of the sector P_1OQ and the area of the triangle P_1OQ . Since the angle between P_1O and P_1Q is $\pi/2$, the area of the sector P_1OQ is

$$\frac{\pi/2}{2\pi}\pi(2)^2 = \pi.$$

By the well-known formula for the area of a triangle, the area of the triangle P_1OQ is (2)(2)/2 = 2. Hence, the area of the segment OQ of C_1 is $\pi - 2$. Similarly, the area of the segment OQ of C_2 is $\pi - 2$. Hence, the area of the shaded region is $2(\pi - 2) = 2\pi - 4$, so the correct answer is a) or f) $2\pi - 4$.

Method 2: The part of the region below the line y = x (in polar coordinates,

Feb. 7,th 2005

 $\theta = \pi/4$) is defined by $0 \le r \le 4 \sin \theta$ and $0 \le \theta \le \pi/4$. Its area is then

$$\int_0^{\pi/4} \frac{(4\sin\theta)^2}{2} d\theta = 8 \int_0^{\pi/4} \sin^2\theta \, d\theta$$
$$= 4 \int_0^{\pi/4} 1 - \cos 2\theta \, d\theta$$
$$= 4(\theta - (\sin 2\theta)/2) \big|_0^{\pi/4}$$
$$= 4\left(\frac{\pi}{4} - \frac{1}{2}\right)$$
$$= \pi - 2.$$

Likewise, the part of the region above the line y = x is defined by $0 \le r \le 4 \cos \theta$ and $\pi/4 \le \theta \le \pi/2$. Its area is then

$$\int_{\pi/4}^{\pi/2} \frac{(4\cos\theta)^2}{2} d\theta = 8 \int_{\pi/4}^{\pi/2} \cos^2\theta \, d\theta$$
$$= 4 \int_{\pi/4}^{\pi/2} 1 + \cos 2\theta \, d\theta$$
$$= 4(\theta + (\sin 2\theta)/2) \Big|_{\pi/4}^{\pi/2}$$
$$= 4\Big(\frac{\pi}{2} + 0 - \frac{\pi}{4} - \frac{1}{2}\Big)$$
$$= \pi - 2.$$

Hence, the area of the entire region is $2\pi - 4$, and the correct answer is a) or f) $2\pi - 4$.

MC 7. Find a unit vector in the direction of $\mathbf{v} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$. a) $\mathbf{i} + \mathbf{j} + \mathbf{k}$; b) \mathbf{i} ; c) $\frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} + \frac{1}{3}\mathbf{k}$; d) $\frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \mathbf{k}$; e) $\frac{1}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} + \mathbf{k}$; f) $\mathbf{i} + \mathbf{j}$. \diamondsuit Since

$$|\mathbf{v}| = \sqrt{2^2 + 2^2 + 1^2} = \sqrt{9} = 3,$$

the vector $\mathbf{v}/3 = \frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} + \frac{1}{3}\mathbf{k}$ is a unit vector in the direction of \mathbf{v} . Hence, the correct answer is c) $\frac{2}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} + \frac{1}{3}\mathbf{k}$.

MC 8. For what value of *x* will the vectors $\mathbf{v} = \langle x, 3 \rangle$ and $\mathbf{w} = \langle 4, 5 \rangle$ be orthogonal? a) -4/15; b) 15/4; c) 20/3; d) -15/4; e) 3/20; f) 4/15.

 $\mathbf{v} \perp \mathbf{w}$ when $\mathbf{v} \cdot \mathbf{w} = 0$. Since $\mathbf{v} \cdot \mathbf{w} = x \cdot 4 + 3 \cdot 5 = 4x + 15$, we solve 4x + 15 = 0: x = -15/4. Hence, the correct answer is d) -15/4.

MC 9. Find the length of the cardioid $r = 1 + \sin \theta$. a) 2π ; b) $\pi/2$; c) π ; d) 0; e) 8; f) $3\pi/2$; g) 16. \Diamond

The length of a curve given in polar coordinates is

$$L = \int_a^b \sqrt{r^2 + (dr/d\theta)^2} \, d\theta.$$

Applying this formula to the cardioid $r = 1 + \sin \theta$ from $\theta = 0$ to 2π gives

$$L = \int_0^{2\pi} \sqrt{(1 + \sin \theta)^2 + \cos^2 \theta} \, d\theta$$
$$= \int_0^{2\pi} \sqrt{1 + 2\sin \theta + \sin^2 \theta + \cos^2 \theta} \, d\theta$$
$$= \int_0^{2\pi} \sqrt{2 + 2\sin \theta} \, d\theta.$$

From here, I see two ways to evaluate this integral.

Method 1:

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{2 + 2\sin\theta} \, d\theta \\ &= \int_{0}^{2\pi} \sqrt{2 + 2\cos(\theta - \pi/2)} \, d\theta \\ &= \int_{0}^{2\pi} 2\sqrt{\frac{1 + \cos(\theta - \pi/2)}{2}} \, d\theta \\ &= \int_{0}^{2\pi} 2\sqrt{\cos^{2}(\theta/2 - \pi/4)} \, d\theta \\ &= \int_{0}^{3\pi/2} 2\cos(\theta/2 - \pi/4) \, d\theta - \int_{3\pi/2}^{2\pi} 2\cos(\theta/2 - \pi/4) \, d\theta \\ &= 4\sin(\theta/2 - \pi/4) \big|_{0}^{3\pi/2} - 4\sin(\theta/2 - \pi/4) \big|_{3\pi/2}^{2\pi} \\ &= 4(1 - (-2\sqrt{2})) - 4(2\sqrt{2} - 1) \\ &= 8. \end{split}$$

Hence, the correct answer is e) 8. \blacklozenge

Feb. 7,th 2005

Method 2: Using the substitution $u = 1 - \sin \theta$ with $du = -\cos \theta d\theta$,

$$\begin{split} L &= \int_{0}^{2\pi} \sqrt{2 + 2\sin\theta} \, d\theta \\ &= \sqrt{2} \int_{0}^{2\pi} \sqrt{\frac{1 - \sin^{2}\theta}{1 - \sin\theta}} \, d\theta \\ &= \sqrt{2} \int_{0}^{2\pi} \sqrt{\frac{\cos^{2}\theta}{1 - \sin\theta}} \, d\theta \\ &= \sqrt{2} \int_{-\pi/2}^{3\pi/2} \sqrt{\frac{\cos^{2}\theta}{1 - \sin\theta}} \, d\theta \\ &= \sqrt{2} \int_{-\pi/2}^{\pi/2} \frac{\cos\theta}{\sqrt{1 - \sin\theta}} \, d\theta + \sqrt{2} \int_{\pi/2}^{3\pi/2} -\frac{\cos\theta}{\sqrt{1 - \sin\theta}} \, d\theta \\ &= -\sqrt{2} \int_{2}^{0} \frac{du}{\sqrt{u}} + \sqrt{2} \int_{0}^{2} \frac{du}{\sqrt{u}} \\ &= 4\sqrt{2} \int_{0}^{2} \frac{du}{2\sqrt{u}} \\ &= 4\sqrt{2}(\sqrt{u}) \big|_{0}^{2} \\ &= 4\sqrt{2}\sqrt{2} = 8. \end{split}$$

Hence, the correct answer is e) 8. \blacklozenge

MC 10. Find a unit vector orthogonal to both $\langle 1, -1, 0 \rangle$ and $\langle 1, 2, 3 \rangle$. a) $\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \rangle$; b) $\langle -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \rangle$; c) $\langle \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \rangle$; d) $\langle \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \rangle$; e) $\langle \frac{2}{3}, \frac{2}{3}, \frac{1}{3} \rangle$; f) $\langle \frac{2}{3}, \frac{2}{3}, -\frac{1}{3} \rangle$. \Diamond Let $\mathbf{a} = \langle 1, -1, 0 \rangle$ and $\mathbf{b} = \langle 1, 2, 3 \rangle$. Then the cross product $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b} .

$$\mathbf{a} \times \mathbf{b} = (-1 \cdot 3 - 0 \cdot 2)\mathbf{i} - (1 \cdot 3 - 0 \cdot 1)\mathbf{j} + (1 \cdot 2 - (-1) \cdot 1)\mathbf{k} = -3\mathbf{i} - 3\mathbf{j} + 3\mathbf{k}.$$

The magnitude of this cross product is $\sqrt{(-3)^2 + (-3)^2 + 3^2} = 3\sqrt{3}$, so the unit vectors

$$\pm \frac{1}{3\sqrt{3}} \langle -3, -3, 3 \rangle = \pm \left\langle -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right\rangle$$

are orthogonal to both **a** and **b**. Hence, the correct answer is d) $\left\langle \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}} \right\rangle$.

- **Free 1.** Find the area of the surfaces formed by rotating the given curves about the specified axis.
 - a. [Redacted.]
 - **b.** $r = \sqrt{\cos 2\theta}, 0 \le \theta \le \pi/4$ about the directrix (*x*-axis). \Diamond

Calculus II

The surface area of a surface of revolution about the *x*-axis given in polar coordinates is

$$SA = \int_{a}^{b} 2\pi r \sin \theta \sqrt{r^{2} + (dr/d\theta)^{2}} \, d\theta.$$

Since $\frac{dr}{d\theta} = -\sin 2\theta / \sqrt{\cos 2\theta}$, applying this formula gives

$$SA = \int_0^{\pi/4} 2\pi \sqrt{\cos 2\theta} \sin \theta \sqrt{\cos 2\theta + \sin^2 2\theta / \cos 2\theta} \, d\theta$$
$$= \int_0^{\pi/4} 2\pi \sin \theta \cos^2 2\theta + \sin^2 2\theta \, d\theta$$
$$= \int_0^{\pi/4} 2\pi \sin \theta \, d\theta$$
$$= 2\pi (-\cos \theta) \big|_0^{\pi/4}$$
$$= 2\pi \Big(-\frac{\sqrt{2}}{2} + 1 \Big)$$
$$= \pi (2 - \sqrt{2}). \blacklozenge$$

- **2.** Below are five polar/parametric graphs and a selection of equations. Match each graph with the equation that produces it. ◊
- A. (3) $r \cos \theta = 1.$
- **B.** (1) $r = \cos 2\theta$.
- **C.** (4) $r = 1 + \cos \theta$.
- **D.** (2) $r = \theta$.
- **E.** (5) $r = -\sin\theta$.
- **3.a.** Find a vector orthogonal to the plane containing the points P = (1, 0, -1), Q = (2, 4, 5), and R = (3, 1, 7). \Diamond

We need a vector orthogonal to the vectors $\overrightarrow{PQ} = \langle 1, 4, 6 \rangle$ and $\overrightarrow{PR} = \langle 2, 1, 8 \rangle$ which are tangent to the plane *PQR*. To find such a vector, we take the cross product

$$\overrightarrow{PQ} \times \overrightarrow{PR} = (4 \cdot 8 - 6 \cdot 1)\mathbf{i} - (1 \cdot 8 - 2 \cdot 6)\mathbf{j} + (1 \cdot 1 - 4 \cdot 2)\mathbf{k} = 26\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}.$$

b. What is the area of the triangle whose vertices are *P*, *Q*, and *R*? \Diamond

Feb. 7,th 2005

The area is half the magnitude of the cross product:

$$A = \frac{|\overrightarrow{PQ} \times \overrightarrow{PR}|}{2}$$
$$= \frac{\sqrt{26^2 + 4^2 + (-7)^2}}{2}$$
$$= \frac{\sqrt{676 + 16 + 49}}{2}$$
$$= \frac{\sqrt{741}}{2} \cdot \blacklozenge$$

4. Show that the vector $\mathbf{v} = \mathbf{b} - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right)\mathbf{a}$ is orthogonal to \mathbf{a} . \Diamond We must show that $\mathbf{v} \cdot \mathbf{a} = 0$.

$$\mathbf{v} \cdot \mathbf{a} = \left(\mathbf{b} - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right)\mathbf{a}\right) \cdot \mathbf{a}$$
$$= \mathbf{b} \cdot \mathbf{a} - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right)\mathbf{a} \cdot \mathbf{a}$$
$$= \mathbf{a} \cdot \mathbf{b} - \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right)|\mathbf{a}|^2$$
$$= \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{b}$$
$$= 0. \blacklozenge$$