Midterm 1

Benjamin Schak

Feb. 7, ${ }^{\text {th }} 2005$

T/F 1. If $\mathbf{w} \neq \mathbf{0}, \mathbf{v} \neq \mathbf{0}$, and $\mathbf{w} \times \mathbf{v}=\mathbf{z}$, then $\mathbf{v} \times \mathbf{w}=\mathbf{z}$. \diamond
False. Counterexample: If $\mathbf{w}=\mathbf{i} \neq \mathbf{0}$ and $\mathbf{v}=\mathbf{j} \neq \mathbf{0}$, then $\mathbf{w} \times \mathbf{v}=\mathbf{k}$ but $\mathbf{v} \times \mathbf{w}=-\mathbf{k}$. Note that, since $\mathbf{w} \times \mathbf{v}=-\mathbf{v} \times \mathbf{w}$, any non-parallel \mathbf{w}, \mathbf{v} constitute a counterexample.
T/F 2. If a non-zero vector \mathbf{v} lies in a plane P, and \mathbf{w} is a non-zero vector not in P, then \mathbf{w} is orthogonal to P only if $\mathbf{v} \cdot \mathbf{w}=0 . \diamond$
True. Proof: We must show that $\mathbf{w} \perp P$ implies that $\mathbf{v} \cdot \mathbf{w}=0 . \mathbf{w} \perp P$ means that \mathbf{w} is orthogonal to every vector in P. Since $\mathbf{v} \in P, \mathbf{w}$ is then orthogonal to \mathbf{v}. Therefore, $\mathbf{v} \cdot \mathbf{w}=0$.
T/F 3. The cross product of any two unit vectors is also a unit vector. \diamond
False. Counterexample: $\mathbf{i} \times \mathbf{i}=\mathbf{0}$. Note that any non-orthogonal unit vectors also constitute a counterexample. \downarrow
T/F 4. If $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are non-zero vectors in \mathbb{R}^{3} and $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{0}$, then \mathbf{A}, \mathbf{B}, and \mathbf{C} are parallel. \diamond
False. Counterexample: If $\mathbf{A}=\mathbf{i} \neq \mathbf{0}, \mathbf{B}=\mathbf{j} \neq \mathbf{0}$, and $\mathbf{C}=\mathbf{k} \neq \mathbf{0}$, then $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{i} \times(\mathbf{j} \times \mathbf{k})=\mathbf{i} \times \mathbf{i}=\mathbf{0}$. Note that if $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{0}$ then \mathbf{A} is in fact perpendicular to both \mathbf{B} and \mathbf{C}.
T/F 5. For any vectors \mathbf{u} and \mathbf{v} in $\mathbb{R}^{3},(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}>0 . \diamond$
False. Since $\mathbf{u} \times \mathbf{v}$ is perpendicular to $\mathbf{u},(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u}$ is always equal to 0 .
MC 1. The parametric equations of a curve are $x=t^{2}, y=t^{4}, t \geq 0$; the Cartesian equation is: a) $y=x^{2}$; b) $y=\sqrt{x}$; c) $y=2 x^{2}$; d) $y=\sqrt{2 x}$; e) $y=x^{2} / 2$; f) $y=\sqrt{x / 2} . \Delta$

Since $y=t^{4}=\left(t^{2}\right)^{2}=x^{2}$, the correct answer is a) $y=x^{2}$.
MC 2. What is the slope of the tangent to the curve $x=\sin t, y=\cos t$ when $t=\pi / 3$?
a) $1 / \sqrt{2}$; b) $1 / \sqrt{3}$; c) $-1 / \sqrt{2}$; d) $-1 / \sqrt{3}$;e) $\sqrt{2}$; f) $-\sqrt{3}$. \diamond

Since

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y / d t}{d x / d t} \\
& =\frac{-\sin t}{\cos t}
\end{aligned}
$$

the slope of (the tangent to) the curve at $t=\pi / 3$ is

$$
\frac{-\sin (\pi / 3)}{\cos (\pi / 3)}=-\frac{\sqrt{3} / 2}{1 / 2}=-\sqrt{3}
$$

Hence, the correct answer is f$)-\sqrt{3}$.
MC 3. Find the length of the curve whose parametric equations are $x=\ln \cos t, y=$ $t, 0 \leq t \leq \pi / 4$. a) $\ln (2 \sqrt{2}+1) ;$ b) $\ln (\sqrt{2}+1) ;$ c) $\ln (2 \sqrt{2}+2) ;$ d) $\ln (\sqrt{2}+1) ;$ e) $\ln (2 \sqrt{3}+1) ;$ f) $\ln (\sqrt{3}+2) . \diamond$

The length of a parametrized curve is

$$
L=\int_{a}^{b} \sqrt{(d x / d t)^{2}+(d y / d t)^{2}} d t
$$

Applying this formula with $d x / d t=-\sin t / \cos t=-\tan t$ and $d y / d t=1$ gives

$$
\begin{aligned}
L & =\int_{0}^{\pi / 4} \sqrt{\tan ^{2} t+1} d t \\
& =\int_{0}^{\pi / 4} \sqrt{\sec ^{2} t} d t \\
& =\int_{0}^{\pi / 4} \sec t d t
\end{aligned}
$$

(The last step is valid since $\sec t \geq 0$ between $t=0$ and $\pi / 4$.) From here there are two methods to evaluate this integral.

Method 1: This is my method, and involves dogged substitutions. The sub-
stitutions I use are $u=\cos t, v=1-u^{2}$, and $w=\sqrt{v}$.

$$
\begin{aligned}
L & =\int_{0}^{\pi / 4} \sec t d t \\
& =-\int_{1}^{1 / \sqrt{2}} \frac{d u}{u \sqrt{1-u^{2}}} \\
& =\frac{1}{2} \int_{0}^{1 / 2} \frac{d v}{(1-v) \sqrt{v}} \\
& =\frac{1}{2} \int_{0}^{1 / \sqrt{2}} \frac{2}{1-w^{2}} d w \\
& =\frac{1}{2} \int_{0}^{1 / \sqrt{2}} \frac{1}{1-w}+\frac{1}{1+w} d w \\
& =\left.\frac{1}{2}(-\ln |1-w|+\ln |1+w|)\right|_{0} ^{1 / \sqrt{2}} \\
& =\frac{1}{2}\left(-\ln \left(1-\frac{1}{\sqrt{2}}\right)+\ln \left(1+\frac{1}{\sqrt{2}}\right)\right) \\
& =\frac{1}{2}\left(\ln \frac{(\sqrt{2}+1) / \sqrt{2}}{(\sqrt{2}-1) / \sqrt{2}}\right) \\
& =\frac{1}{2} \ln \frac{(\sqrt{2}+1)(-\sqrt{2}-1)}{-1} \\
& =\ln \sqrt{3+2 \sqrt{2}}
\end{aligned}
$$

Now, $(1+\sqrt{2})^{2}=3+2 \sqrt{2}$, so

$$
\begin{aligned}
L & =\ln \sqrt{3+2 \sqrt{2}} \\
& =\ln (1+\sqrt{2})
\end{aligned}
$$

Hence, the correct answer is d) $\ln (\sqrt{2}+1)$.
Method 1': This method rolls the three substitutions of Method 1 into one less obvious substitution $u=\sin t$.

$$
\begin{aligned}
L & =\int_{0}^{\pi / 4} \sec t d t \\
& =\int_{0}^{\pi / 4} \frac{\cos t}{1-\sin ^{2} t} d t \\
& =\int_{0}^{1 / \sqrt{2}} \frac{d u}{1-u^{2}}
\end{aligned}
$$

From this point forward, Method 1^{\prime} is the same as Method 1.

Feb. $7,{ }^{\text {th }} 2005$

Method 2: I don't think anyone short of a true genius would know this method without seeing it at least once before. It uses the substitution $u=$ $\sec t+\tan t$.

$$
\begin{aligned}
L & =\int_{0}^{\pi / 4} \sec t d t \\
& =\int_{0}^{\pi / 4} \frac{\sec t(\sec t+\tan t)}{\sec t+\tan t} d t \\
& =\int_{0}^{\pi / 4} \frac{\sec t \tan t+\sec ^{2} t}{\sec t+\tan t} d t \\
& =\int_{1}^{1+\sqrt{2}} \frac{d u}{u} \\
& =\left.(\ln |u|)\right|_{1} ^{1+\sqrt{2}} \\
& =\ln |1+\sqrt{2}|=\ln (1+\sqrt{2})
\end{aligned}
$$

Hence, the correct answer is $d) \ln (\sqrt{2}+1)$.
MC 4. Find the Cartesian equation for the curve given by the polar equation $r \sin \theta+$ $r^{2} \cos ^{2} \theta+r^{2}=0$. a) $2 x+2 x^{2}+y^{2}=0 ;$ b) $x^{2}+y+y^{2}=0$; c) $2 x^{2}+y+y^{2}=0$; d) $x^{2}+2 y+2 y^{2}=0$; e) $x^{2}+x+y^{2}=0$; f) $x+x^{2}+2 y^{2}=0 . \diamond$

Substituting $r \sin \theta=y, r \cos \theta=x$, and $r^{2}=x^{2}+y^{2}$, we get

$$
\begin{array}{r}
y+x^{2}+\left(x^{2}+y^{2}\right)=0 \\
2 x^{2}+y+y^{2}=0
\end{array}
$$

Hence, the correct answer is c) $2 x^{2}+y+y^{2}=0$.
MC 5. Find the area of the region inside the polar curve $r=\sin \theta$.
Method 1: The picture on the exam sheet suggests that this curve is a circle of radius $1 / 2$ centered at $(x, y)=(0,1 / 2)$. Indeed, we can prove this by converting to Cartesian coordinates:

$$
\begin{aligned}
r & =\sin \theta \\
r^{2} & =r \sin \theta \\
x^{2}+y^{2} & =y \\
x^{2}+y^{2}-y+\frac{1}{4} & =\frac{1}{4} \\
x^{2}+\left(y-\frac{1}{2}\right)^{2} & =\left(\frac{1}{2}\right)^{2} .
\end{aligned}
$$

The area of a circle of radius r is πr^{2}, so the area of this circle is $\pi(1 / 2)^{2}=\pi / 4$. Hence, the correct answer is e) $\pi / 4$.

Method 2: By inspection, one loop of this curve is parametrized by $r=$ $\sin \theta, 0 \leq \theta \leq \pi$. Then by the polar formula for area, the area within this curve is

$$
\begin{aligned}
\int_{0}^{\pi} \frac{r^{2}}{2} d \theta & =\int_{0}^{\pi} \frac{\sin ^{2} \theta}{2} d \theta \\
& =\int_{0}^{\pi} \frac{1}{2} \cdot \frac{1-\cos 2 \theta}{2} d \theta \\
& =\int_{0}^{\pi} \frac{d \theta}{4}-\frac{1}{4} \int_{0}^{\pi} \cos 2 \theta d \theta \\
& =\frac{\pi}{4}-\left.\frac{1}{8}(\sin 2 \theta)\right|_{0} ^{\pi} \\
& =\frac{\pi}{4}
\end{aligned}
$$

(If you haven't memorized the identity $\sin ^{2} \theta=(1-\cos 2 \theta) / 2$, you can get it by solving the simultaneous equations $\sin ^{2} \theta+\cos ^{2} \theta=1, \cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta$ for $\sin ^{2} \theta$.) Hence, the correct answer is e) $\pi / 4$.

MC 6. Find the area of the shaded region inside both of the polar curves $r=4 \sin \theta$ and $r=4 \cos \theta . \diamond$

Method 1: By the argument of Method 1 of problem 5, the two curves are circles of radius 2 , one centered at the point $P_{1}=(x, y)=(2,0)$ and $P_{2}=$ $(x, y)=(0,2)$. The circles (call the one centered on the x-axis C_{1} and the other C_{2}) meet at the origin O and at the point $Q=(x, y)=(2,2)$. The given region is the (disjoint union) of the segment $O Q$ of C_{1} and the segment $O Q$ of C_{2}.

The area of the segment $O Q$ of C_{1} is the difference between the area of the sector $P_{1} O Q$ and the area of the triangle $P_{1} O Q$. Since the angle between $P_{1} O$ and $P_{1} Q$ is $\pi / 2$, the area of the sector $P_{1} O Q$ is

$$
\frac{\pi / 2}{2 \pi} \pi(2)^{2}=\pi
$$

By the well-known formula for the area of a triangle, the area of the triangle $P_{1} O Q$ is $(2)(2) / 2=2$. Hence, the area of the segment $O Q$ of C_{1} is $\pi-2$. Similarly, the area of the segment $O Q$ of C_{2} is $\pi-2$. Hence, the area of the shaded region is $2(\pi-2)=2 \pi-4$, so the correct answer is a) or f) $2 \pi-4$.

Method 2: The part of the region below the line $y=x$ (in polar coordinates,
$\theta=\pi / 4)$ is defined by $0 \leq r \leq 4 \sin \theta$ and $0 \leq \theta \leq \pi / 4$. Its area is then

$$
\begin{aligned}
\int_{0}^{\pi / 4} \frac{(4 \sin \theta)^{2}}{2} d \theta & =8 \int_{0}^{\pi / 4} \sin ^{2} \theta d \theta \\
& =4 \int_{0}^{\pi / 4} 1-\cos 2 \theta d \theta \\
& =\left.4(\theta-(\sin 2 \theta) / 2)\right|_{0} ^{\pi / 4} \\
& =4\left(\frac{\pi}{4}-\frac{1}{2}\right) \\
& =\pi-2
\end{aligned}
$$

Likewise, the part of the region above the line $y=x$ is defined by $0 \leq r \leq$ $4 \cos \theta$ and $\pi / 4 \leq \theta \leq \pi / 2$. Its area is then

$$
\begin{aligned}
\int_{\pi / 4}^{\pi / 2} \frac{(4 \cos \theta)^{2}}{2} d \theta & =8 \int_{\pi / 4}^{\pi / 2} \cos ^{2} \theta d \theta \\
& =4 \int_{\pi / 4}^{\pi / 2} 1+\cos 2 \theta d \theta \\
& =\left.4(\theta+(\sin 2 \theta) / 2)\right|_{\pi / 4} ^{\pi / 2} \\
& =4\left(\frac{\pi}{2}+0-\frac{\pi}{4}-\frac{1}{2}\right) \\
& =\pi-2
\end{aligned}
$$

Hence, the area of the entire region is $2 \pi-4$, and the correct answer is a) or f)
$2 \pi-4$.
MC 7. Find a unit vector in the direction of $\mathbf{v}=2 \mathbf{i}+2 \mathbf{j}+\mathbf{k}$. a) $\mathbf{i}+\mathbf{j}+\mathbf{k}$; b) \mathbf{i}; c) $\frac{2}{3} \mathbf{i}+$ $\frac{2}{3} \mathbf{j}+\frac{1}{3} \mathbf{k}$; d) $\frac{1}{2} \mathbf{i}+\frac{1}{2} \mathbf{j}+\mathbf{k}$; e) $\frac{1}{3} \mathbf{i}+\frac{1}{3} \mathbf{j}+\mathbf{k}$; f) $\mathbf{i}+\mathbf{j} . \diamond$

Since

$$
|\mathbf{v}|=\sqrt{2^{2}+2^{2}+1^{2}}=\sqrt{9}=3
$$

the vector $\mathbf{v} / 3=\frac{2}{3} \mathbf{i}+\frac{2}{3} \mathbf{j}+\frac{1}{3} \mathbf{k}$ is a unit vector in the direction of \mathbf{v}. Hence, the correct answer is c) $\frac{2}{3} \mathbf{i}+\frac{2}{3} \mathbf{j}+\frac{1}{3} \mathbf{k}$.
MC 8. For what value of x will the vectors $\mathbf{v}=\langle x, 3\rangle$ and $\mathbf{w}=\langle 4,5\rangle$ be orthogonal? a) $-4 / 15$; b) $15 / 4$; c) $20 / 3$; d) $-15 / 4$; e) $3 / 20$; f) $4 / 15$. \diamond
$\mathbf{v} \perp \mathbf{w}$ when $\mathbf{v} \cdot \mathbf{w}=0$. Since $\mathbf{v} \cdot \mathbf{w}=x \cdot 4+3 \cdot 5=4 x+15$, we solve $4 x+15=0: x=-15 / 4$. Hence, the correct answer is d$)-15 / 4$.
MC 9. Find the length of the cardioid $r=1+\sin \theta$. a) 2π; b) $\pi / 2$; c) π; d) 0 ; e) 8 ; f) $3 \pi / 2$; g) $16 . \diamond$

The length of a curve given in polar coordinates is

$$
L=\int_{a}^{b} \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta
$$

Applying this formula to the cardioid $r=1+\sin \theta$ from $\theta=0$ to 2π gives

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{(1+\sin \theta)^{2}+\cos ^{2} \theta} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{1+2 \sin \theta+\sin ^{2} \theta+\cos ^{2} \theta} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{2+2 \sin \theta} d \theta
\end{aligned}
$$

From here, I see two ways to evaluate this integral.
Method 1:

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{2+2 \sin \theta} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{2+2 \cos (\theta-\pi / 2)} d \theta \\
& =\int_{0}^{2 \pi} 2 \sqrt{\frac{1+\cos (\theta-\pi / 2)}{2}} d \theta \\
& =\int_{0}^{2 \pi} 2 \sqrt{\cos ^{2}(\theta / 2-\pi / 4)} d \theta \\
& =\int_{0}^{3 \pi / 2} 2 \cos (\theta / 2-\pi / 4) d \theta-\int_{3 \pi / 2}^{2 \pi} 2 \cos (\theta / 2-\pi / 4) d \theta \\
& =\left.4 \sin (\theta / 2-\pi / 4)\right|_{0} ^{3 \pi / 2}-\left.4 \sin (\theta / 2-\pi / 4)\right|_{3 \pi / 2} ^{2 \pi} \\
& =4(1-(-2 \sqrt{2}))-4(2 \sqrt{2}-1) \\
& =8
\end{aligned}
$$

Hence, the correct answer is e) 8 .

Feb. $7,{ }^{\text {th }} 2005$

Method 2: Using the substitution $u=1-\sin \theta$ with $d u=-\cos \theta d \theta$,

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{2+2 \sin \theta} d \theta \\
& =\sqrt{2} \int_{0}^{2 \pi} \sqrt{\frac{1-\sin ^{2} \theta}{1-\sin \theta}} d \theta \\
& =\sqrt{2} \int_{0}^{2 \pi} \sqrt{\frac{\cos ^{2} \theta}{1-\sin \theta}} d \theta \\
& =\sqrt{2} \int_{-\pi / 2}^{3 \pi / 2} \sqrt{\frac{\cos ^{2} \theta}{1-\sin \theta}} d \theta \\
& =\sqrt{2} \int_{-\pi / 2}^{\pi / 2} \frac{\cos \theta}{\sqrt{1-\sin \theta}} d \theta+\sqrt{2} \int_{\pi / 2}^{3 \pi / 2}-\frac{\cos \theta}{\sqrt{1-\sin \theta}} d \theta \\
& =-\sqrt{2} \int_{2}^{0} \frac{d u}{\sqrt{u}}+\sqrt{2} \int_{0}^{2} \frac{d u}{\sqrt{u}} \\
& =4 \sqrt{2} \int_{0}^{2} \frac{d u}{2 \sqrt{u}} \\
& =\left.4 \sqrt{2}(\sqrt{u})\right|_{0} ^{2} \\
& =4 \sqrt{2} \sqrt{2}=8
\end{aligned}
$$

Hence, the correct answer is e) 8 .
MC 10. Find a unit vector orthogonal to both $\langle 1,-1,0\rangle$ and $\langle 1,2,3\rangle$. a) $\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle$;b) $\left\langle-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle$;c) $\left\langle\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle$;d) $\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right\rangle$;e) $\left\langle\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right\rangle$; f) $\left\langle\frac{2}{3}, \frac{2}{3},-\frac{1}{3}\right\rangle . \diamond$

Let $\mathbf{a}=\langle 1,-1,0\rangle$ and $\mathbf{b}=\langle 1,2,3\rangle$. Then the cross product $\mathbf{a} \times \mathbf{b}$ is orthogonal to both \mathbf{a} and \mathbf{b}.
$\mathbf{a} \times \mathbf{b}=(-1 \cdot 3-0 \cdot 2) \mathbf{i}-(1 \cdot 3-0 \cdot 1) \mathbf{j}+(1 \cdot 2-(-1) \cdot 1) \mathbf{k}=-3 \mathbf{i}-3 \mathbf{j}+3 \mathbf{k}$.
The magnitude of this cross product is $\sqrt{(-3)^{2}+(-3)^{2}+3^{2}}=3 \sqrt{3}$, so the unit vectors

$$
\pm \frac{1}{3 \sqrt{3}}\langle-3,-3,3\rangle= \pm\left\langle-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle
$$

are orthogonal to both \mathbf{a} and \mathbf{b}. Hence, the correct answer is d) $\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right\rangle$. \uparrow
Free 1. Find the area of the surfaces formed by rotating the given curves about the specified axis.
a. [Redacted.]
b. $r=\sqrt{\cos 2 \theta}, 0 \leq \theta \leq \pi / 4$ about the directrix (x-axis). \diamond

The surface area of a surface of revolution about the x-axis given in polar coordinates is

$$
S A=\int_{a}^{b} 2 \pi r \sin \theta \sqrt{r^{2}+(d r / d \theta)^{2}} d \theta
$$

Since $\frac{d r}{d \theta}=-\sin 2 \theta / \sqrt{\cos 2 \theta}$, applying this formula gives

$$
\begin{aligned}
S A & =\int_{0}^{\pi / 4} 2 \pi \sqrt{\cos 2 \theta} \sin \theta \sqrt{\cos 2 \theta+\sin ^{2} 2 \theta / \cos 2 \theta} d \theta \\
& =\int_{0}^{\pi / 4} 2 \pi \sin \theta \cos ^{2} 2 \theta+\sin ^{2} 2 \theta d \theta \\
& =\int_{0}^{\pi / 4} 2 \pi \sin \theta d \theta \\
& =\left.2 \pi(-\cos \theta)\right|_{0} ^{\pi / 4} \\
& =2 \pi\left(-\frac{\sqrt{2}}{2}+1\right) \\
& =\pi(2-\sqrt{2}) .
\end{aligned}
$$

2. Below are five polar/parametric graphs and a selection of equations. Match each graph with the equation that produces it. \diamond
A. (3) $r \cos \theta=1$.
B. (1) $r=\cos 2 \theta$.
C. (4) $r=1+\cos \theta$.
D. (2) $r=\theta$.
E. (5) $r=-\sin \theta$.
3.a. Find a vector orthogonal to the plane containing the points $P=(1,0,-1)$, $Q=(2,4,5)$, and $R=(3,1,7) . \diamond$

We need a vector orthogonal to the vectors $\overrightarrow{P Q}=\langle 1,4,6\rangle$ and $\overrightarrow{P R}=\langle 2,1,8\rangle$ which are tangent to the plane $P Q R$. To find such a vector, we take the cross product

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=(4 \cdot 8-6 \cdot 1) \mathbf{i}-(1 \cdot 8-2 \cdot 6) \mathbf{j}+(1 \cdot 1-4 \cdot 2) \mathbf{k}=26 \mathbf{i}+4 \mathbf{j}-7 \mathbf{k}
$$

b. What is the area of the triangle whose vertices are P, Q, and R ? \diamond

Feb. $7,{ }^{\text {th }} 2005$

The area is half the magnitude of the cross product:

$$
\begin{aligned}
A & =\frac{|\overrightarrow{P Q} \times \overrightarrow{P R}|}{2} \\
& =\frac{\sqrt{26^{2}+4^{2}+(-7)^{2}}}{2} \\
& =\frac{\sqrt{676+16+49}}{2} \\
& =\frac{\sqrt{741}}{2}
\end{aligned}
$$

4. Show that the vector $\mathbf{v}=\mathbf{b}-\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mid \mathbf{a}^{2}}\right) \mathbf{a}$ is orthogonal to \mathbf{a}. \diamond

We must show that $\mathbf{v} \cdot \mathbf{a}=0$.

$$
\begin{aligned}
\mathbf{v} \cdot \mathbf{a} & =\left(\mathbf{b}-\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}}\right) \mathbf{a}\right) \cdot \mathbf{a} \\
& =\mathbf{b} \cdot \mathbf{a}-\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}}\right) \mathbf{a} \cdot \mathbf{a} \\
& =\mathbf{a} \cdot \mathbf{b}-\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}}\right)|\mathbf{a}|^{2} \\
& =\mathbf{a} \cdot \mathbf{b}-\mathbf{a} \cdot \mathbf{b} \\
& =0 .
\end{aligned}
$$

