Math 312 - HOMEWORK 10 - Due Friday, April 24, 2015
Due by $4 p m$ in your grader Yu Wang's mailbox in DRL $4 W 1$.

Each Problem is worth 20 points, Five Problems will be graded. You will

 also receive up to 10 points per assignment for completeness!All problems are from the book: Gilbert Strang, Introduction to Linear Algebra, Fourth Edition

Given the matrix A :

$$
A=\left(\begin{array}{ccc}
5 & -2 & -3 \\
-1 & 4 & -3 \\
1 & -4 & 3
\end{array}\right)
$$

1. Compute all the eigenvalues of A and write down their algebraic multiplicities.
2. Compute eigenvectors corresponding to the eigenvalues of A : what are the geometric multiplicities of the eigenvalues?
3. Is A diagonalizable? If yes, write it as $S D S^{-1}$. Otherwise, explain why we can't find S and D.
4. Compute the Jordan decomposition of $A \ldots$ that is, find matrices S and J so that S is invertible, J is in Jordan form, and $A=S J S^{-1}$.
5. Consider a $k \times k$ Jordan block

$$
M=\left(\begin{array}{ccccc}
\lambda & 1 & 0 & \cdots & 0 \\
0 & \lambda & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & \cdots & \cdots & \lambda & 1 \\
0 & \cdots & \cdots & 0 & \lambda
\end{array}\right)
$$

In words M has λ as every diagonal entry, ones above the diagonal, and all other entries are zero.
Show that if $M^{2}=M$ then k must equal 1 , and λ must be either 0 or 1 . (Hint: Assume $k=2$ and compute M^{2} for an arbitrary λ, and set it equal to M. The argument for general k is quite similar!).
6. Strang. Chapter 8. Section 8.4: \# 1, 2.

Reading: Read through Chapters 6, 7 and 8 of Strang.

