Practice exam - will not be collected

1. (20 points) For each of the following statements, mark whether they are true or false. (5 problems 4 points each).
(a) For a matrix A, in the Singular Value Decomposition (SVD) $A=U \Sigma V^{T}$ the factor U is an orthogonal matrix.
(b) If $\operatorname{det}\left(A^{2}\right)=1$ then A 's eigenvalues must all be 1 or -1 .

ANS: F
(T)
(F)
(c) For a symmetric positive definite matrix A all pivots are positive. ANS:T
(T)
(F)
(d) A 5×5 matrix B has eigenvalue $\lambda=3$ of algebraic multiplicity 5 and geometric multiplicity 1 and the matrix B is therefore diagonalizable. ANS: \mathbf{F}

> (T)
(F)
(e) All the eigenvalues of a real symmetric matrix are real.

ANS: T

> (T)
(F)
2. (20 points) Consider the following 3×3 matrix:

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

(a) Calculate the eigenvalues of A.
(b) Calculate the eigenvectors of A and write the decomposition $A=S D S^{-1}$ with the diagonal matrix D.
(c) Write an expression for A^{k} for any positive integer k.
(d) Write an expression for e^{A}.

SOLN: We calculate $\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}1-\lambda & 1 & 1 \\ 1 & -\lambda & 0 \\ 1 & 0 & -\lambda\end{array}\right|=\left|\begin{array}{ccc}1-\lambda & 1 & 1 \\ 1 & -\lambda & 0 \\ 0 & \lambda & -\lambda\end{array}\right|=\left|\begin{array}{ccc}1-\lambda & 1 & 2 \\ 1 & -\lambda & -\lambda \\ 0 & \lambda & 0\end{array}\right|=-\lambda(\lambda+1)(\lambda-2)$
a) The eigenvalues are $\lambda_{1}=0, \lambda_{2}=-1, \lambda_{3}=2$.

For the eigenvectors, we solve the systems $\left(A-\lambda_{s} I\right) e_{s}=0, \quad s=1,2,3$.
Let $e_{s}=\left[x_{s}, y_{s}, z_{s}\right]$. We have to solve the following systems:

$$
\begin{array}{ccc}
x_{1}+y_{1}+z_{1}=0, & 2 x_{2}+y_{2}+z_{2}=0, & -x_{3}+y_{3}+z_{3}=0 \\
x_{1}=0, & x_{2}+y_{2}=0, & x_{3}-2 y_{3}=0 \\
x_{1}=0, & x_{2}+z=0, & x_{3}-2 z_{3}=0
\end{array}
$$

The matrix A is symmetric with three different eigenvalues. Therefore the three eigenvectors are orthogonal. We normalize each eigenvector to get an orthogonal matrix $S=Q$.

Solving the systems above, we select three orthonormal eigenvectors:

$$
e_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right), \quad e_{2}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right), \quad e_{3}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right) .
$$

The diagonal matrix D equals

$$
D=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

The matrix S is:

$$
S=\left(\begin{array}{ccc}
0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}}
\end{array}\right) .
$$

and it is an orthogonal matrix, $S^{-1}=S^{T}$.
b) The factorization of A is:

$$
A=S D S^{-1}=\left(\begin{array}{ccc}
0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}
\end{array}\right)
$$

c) Using $A=S D S^{-1}$ we have $A^{k}=S D^{k} S^{-1}$ and

$$
D^{k}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & (-1)^{k} & 0 \\
0 & 0 & 2^{k}
\end{array}\right)
$$

d) Using the expansion of e^{A} and c) we calculate

$$
e^{A}=I+\frac{A}{1!}+\frac{A^{2}}{2!}+\cdots=S\left(I+\frac{D}{1!}+\frac{D^{2}}{2!}+\ldots\right) S^{T}
$$

Using the expansion of e^{t} we obtain

$$
e^{A}=\left(\begin{array}{ccc}
0 & -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{ccc}
e^{0} & 0 & 0 \\
0 & e^{-1} & 0 \\
0 & 0 & e^{2}
\end{array}\right)\left(\begin{array}{ccc}
0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}}
\end{array}\right)
$$

3. (20 points) Find the Singular Value Decomposition (SVD) of the matrix:

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right)
$$

(a) Find the eigenvalues and unit length eigenvectors for $A^{T} A$ and $A A^{T}$. (What is the rank of A ?)
(b) Calculate the three matrices U_{r}, Σ_{r}, V_{r} in the reduced SVD and observe $A V_{r}=U_{r} \Sigma_{r}$.
(c) Calculate the three matricies U, Σ, and V^{T} in the SVD and observe that $A=U \Sigma V^{T}$. Please explain clearly how you obtain these matrices.

SOLN:

a) Calculate:

$$
A^{T} A=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

We have $\operatorname{det}\left(A^{T} A-\lambda I\right)=\lambda^{2}-4 \lambda+3$ with eigenvalues $\lambda_{1}=3, \quad \lambda_{2}=1$.
The rank of A is two.
Solving $\left(A^{T} A-3 I\right) v_{1}=0$ and $\left(A^{T} A-I\right) v_{2}=0$ we obtain

$$
v_{1}=\frac{1}{\sqrt{2}}\binom{1}{1}, \quad v_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}
$$

We have

$$
A A^{T}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 2
\end{array}\right)
$$

We have $\operatorname{det}\left(A A^{T}-\lambda I\right)=(\lambda-1)\left(-\lambda^{2}+3 \lambda\right)$ with eigenvalues $\lambda_{1}=3, \lambda_{2}=1$, $\lambda_{3}=0$.

Solving $\left(A^{T} A-3 I\right) u_{1}=0,\left(A^{T} A-I\right) u_{2}=0$ and $A^{T} A u_{3}=0$ we obtain

$$
u_{1}=\frac{1}{\sqrt{6}}\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right), \quad u_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right), u_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)
$$

b) Observe $u_{1}=\frac{1}{\sqrt{3}} A v_{1}, \quad u_{2}=A v_{2}$, and $u_{3} \in N\left(A^{T}\right)$.

Hence $V_{r}=\left[v_{1} v_{2}\right], U_{r}=\left[u_{1} u_{2}\right]$ with the expressions

$$
V_{r}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right), \quad U_{r}=\left(\begin{array}{cc}
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{2}{\sqrt{6}} & 0
\end{array}\right)
$$

and

$$
A V_{r}=U_{r} \Sigma_{r}, \quad \Sigma_{r}=\left(\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1
\end{array}\right)
$$

c) Since $\operatorname{rank}(A)=2$ and A is 3 by 2 matrix, $V=V_{r}$. To obtain U we need to add one more column to U_{r} from $N\left(A^{T}\right)$ of norm one, $U=\left[u_{1} u_{2} u_{3}\right]$ and to get Σ we need one more row of zeros to be added to Σ_{r}.
The SVD is:

$$
A=U \Sigma V^{T}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}}
\end{array}\right)\left(\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

4. (20 points) Calculate the Jordan form of the following matrix:

$$
B=\left(\begin{array}{ccc}
4 & 2 & 1 \\
-2 & 0 & -1 \\
-1 & -1 & 1
\end{array}\right)
$$

(a) Calculate the eigenvalues of B and show $\lambda_{1}=\lambda_{2}=2, \lambda_{3}=1$.
(b) Find the algebraic and geometric multiplicities of both eigenvalues.
(c) Find the Jordan form J of B.
(d) Find an invertible matrix S so that $B=S J S^{-1}$. Be sure to clearly explain how you obtained the columns of this matrix.

SOLN The problem was solved in class, see your class notes.
5. (20 points) Consider the matrix:

$$
B=\left(\begin{array}{ccc}
-1 & -8 & 4 \\
-8 & -1 & -4 \\
4 & -4 & -7
\end{array}\right)
$$

(a) Calculate the eigenvalues of B and show $\lambda_{1}=\lambda_{2}=-9, \lambda_{3}=9$.
(b) Find the algebraic and geometric multiplicities of both eigenvalues.
(c) Find the diagonal form Λ of B
(d) Find an orthogonal matrix Q so that $B=Q \Lambda Q^{T}$. Be sure to clearly explain how you obtained the columns of this matrix.

SOLN: The problem was solved in class, see your class notes.

