1. (20 points) For each of the following statements, mark whether they are true or false. No work needs to be shown for this problem. (5 problems, 4 points each)
(a) To multiply (the matrices) AB , if A has n rows then B must have n columns.

$$
(\mathrm{T})
$$

(F)
(b) For two matrices it holds that $A B=B A$.
(T)
(F)
(c) The matrices A and $-A$ have different column and null spaces.

> (T)
(F)
(d) The symmetric 3×3 matricies (where $A^{T}=A$) form a subspace.

$$
(\mathrm{T})
$$

(F)
(e) A and A^{T} have the same number of pivots.
(T)
(F)
2. (20 points) Calculate the value of each $A x$ below

$$
\text { (a) }\left(\begin{array}{cccc}
0 & 1 & 5 & 1 \\
1 & 2 & -3 & 0 \\
1 & -1 & 3 & -1 \\
9 & 7 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
2 \\
1 \\
5 \\
8
\end{array}\right)=?
$$

and

$$
\text { (b) }\left(\begin{array}{lllll}
4 & 1 & 0 & 1 & 0 \\
1 & 0 & 2 & 1 & 0 \\
0 & 0 & 1 & 1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 3 \\
1 & 3 \\
1 & 3 \\
0 & 0
\end{array}\right)=\text { ? }
$$

3. (20 points) Invert the matrix A where

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right)
$$

by using the Gauss-Jordan approach starting with the matrix $[A I]$.
4. (20 points) Describe the column space and the null space of the matrix A:

$$
A=\left(\begin{array}{lll}
2 & 1 & 3 \\
6 & 3 & 9 \\
4 & 2 & 6
\end{array}\right) \quad \text { where } \quad b=\left(\begin{array}{l}
1 \\
3 \\
2
\end{array}\right)
$$

Then determine the general (complete) solution to the problem $A x=b$.
5. (20 points)
(a) Define the column, row and the null spaces of the matrix A.
(b) Find a basis for the column, row and the null spaces of A :

$$
A=\left(\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

