#57, 5.2. How many ways to place 8 identical black pieces and 8 identical white pieces on an n^2 chessboard?

$$\binom{64}{8, 8} = \frac{64!}{8!8!} = \frac{64 \cdot 63 - 49}{8!8!}$$

#59, 5.1. What is the probability that two (or more) people in a random group of 25 people have a common birthday?

$$1 - \left(1 - \frac{364}{365} \cdot \frac{363}{365} \cdot \ldots \cdot \frac{311}{365} \right) = 2.5687$$

#53, 5.3 (a) How many #15, 8 digit, can be formed from 3^{15}, 5^{15}, and 7^{15}?

(b) What fraction of the #15 from (a) have three 3^{15}, two 5^{15}, and three 7^{15}?

$$\binom{8}{3, 2, 3} = \frac{8!}{3!2!3!} = 38$$

#8 5.4 How many ways to arrange 10 identical apples and 5 different oranges in a row so that no two orange appear side by side?

Start by placing orange in a row in 5! ways:

- \(O_1\) - \(O_2\) - \(O_3\) - \(O_4\) - \(O_5\) -

There are 6 places to put the apple, and
we need at least one apple in places 3, 3, 3, 5.

Let \(X_i \) = # apples place i.

\[X_1 + X_2 + \ldots + X_6 = 12 \]

\[X_1, X_2 \geq 3 \]

\[X_3, X_4, X_5, X_6 \geq 3 \]

= # weak compositions of 8 into \(\geq 2 \) parts

\[\binom{13}{5} \]

Total: \(\left(\begin{array}{c} 13 \\ 5 \end{array} \right) \times 5^1 = 13 \cdot 13 \cdot 11 \cdot 10 \cdot 9 \]

#10 5.4 How many ways are there to arrange the 26 letters of the alphabet so that no pair of vowels appear consecutively?

Vowels: a, e, i, o, u

Start by arranging vowels in \(5! \) ways, a i e o u

_ e o a i u _

6 spots to place remaining 21 letters, at least one in spots 2, 3, 4, 5. Arrange 21 letters in order in \(21! \) ways. Then distribute in \(\left(\begin{array}{c} 17+5 \\ 5 \end{array} \right) \) ways

Total \(5! \cdot 21! \cdot \left(\begin{array}{c} 22 \\ 5 \end{array} \right) = 21! \cdot 22 \cdot 21 \cdot 20 \cdot 19 \cdot 18 \)
Ex. Now
\[\binom{n}{r} + \binom{n}{r+1} + \cdots + \binom{n}{n} = \binom{n+1}{r+1} \quad \text{for } n \geq r \]

by induction on \(n \).

Base Case \(n = r \)
\[\binom{r}{r} = \binom{r+1}{r+1} \quad \text{and} \quad 1 = 1 \quad \checkmark \]

Inductive Step
\[\binom{n}{r} + \cdots + \binom{n}{n} = \underbrace{\binom{n}{r} + \cdots + \binom{n}{r-1} + \binom{n}{n}}_{\text{by induction}} \]
\[= \binom{n+1}{r+1} \quad \checkmark \]

Prove \(\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n} \)

using generating functions
\[\sum_{k=0}^{n} \binom{n}{k}^2 = \sum_{k=0}^{n} \binom{k}{k} \binom{n}{n-k} = (1+x)^n (1+x)^n \bigg/_{x^n} \]
\[= (1+x)^{2n} \bigg/_{x^n} = \binom{2n}{n} \]
ex #17 6.1 Find a generating function for the number of selections of p sticks of chewing gum chosen from 8 different flavors if each flavor comes in packets of 5 sticks:
\[(1 + x^5 + x^{10} + x^{15} + \ldots)^8 \]

ex. #28, 6.2 A coin is flipped 25 times with 8 tails occurring. What is the probability that no run of six (or more) consecutive heads occurs?

sequences with no run of 6 (or more)

\[
\begin{array}{cccccccc}
T_1 & T_2 & T_3 & T_4 & T_5 & T_6 & T_7 & T_8 \\
\end{array}
\]

9 boxes between Tails to put 17 Heads in, no box with more than 5 Heads,

\[
\left(1 + x + x^2 + x^3 + x^4 + x^5\right)^9 \]

\[
\left(\frac{1-x^6}{1-x}\right)^9
\]

\[
\left(1 - \binom{9}{1}x^6 + \binom{9}{2}x^{12} - \binom{9}{3}x^{18} + \ldots\right)
\]

\[
\sum_{n=0}^{\infty} \binom{n+8}{n} x^n
\]

\[
(17+8) - 9 \binom{11+8}{11} + \binom{9}{2} \binom{5+8}{5}
\]
Problem: \((\frac{25}{7}) - 9 \cdot \left(\frac{19}{11} \right) + 36 \cdot \left(\frac{13}{5} \right) \)

\(\frac{2^5}{8} \)

Example #7 (a) Show using generating functions that the number of partitions of \(n \) into distinct parts equals the number of partitions of \(n \) into odd parts.

\[
\sum_{n=0}^{\infty} x^n \left(\text{# partitions of } n \text{ into distinct parts} \right)
\]

\[
= \frac{1}{1-x} \left(\frac{1}{1-x^2} \right) \left(\frac{1}{1-x^3} \right) \left(\frac{1}{1-x^4} \right) \cdots
\]

\[
= \frac{1-x^2}{1-x} \frac{1-x^4}{1-x^2} \frac{1-x^6}{1-x^3} \frac{1-x^8}{1-x^4} \cdots
\]

\[
= \frac{1}{1-x} \frac{1}{1-x^3} \frac{1}{1-x^5} \frac{1}{1-x^7} \cdots
\]

\[
= \sum_{n=0}^{\infty} x^n \left(\text{# partitions of } n \text{ into odd parts} \right)
\]

Example #9 6.4 How many 10-letter words are there in which each of the letters e, n, r, s occur

(a) At most once?

(b) At least once?
(a) \[10! \left[(1 + x)^4 \left(1 + \frac{x^2}{3!} + \frac{x^3}{3!} + \cdots \right)^2 \right] \bigg|_{x^{10}} \]

\[= 10! \left(1 + x \right)^{4} e^{2\beta x} \bigg|_{x^{10}} \]

\[= 10! \sum_{k=0}^{10} \binom{4}{k} \frac{(2\beta)^k}{k!} e^{2\beta x} \bigg|_{x^{10}} = \left[10! \sum_{k=0}^{10} \binom{4}{k} \frac{(2\beta)^k}{k!} \right] \bigg|_{x^{10}} \]

(b) \[10! \left[\left(x + \frac{x^2}{3!} + \frac{x^3}{3!} + \cdots \right)^4 e^{2\beta x} \right] \bigg|_{x^{10}} \]

\[= 10! \left[(e^x - 1)^4 e^{2\beta x} \right] \bigg|_{x^{10}} \]

\[= 10! \sum_{k=0}^{10} \binom{4}{k} e^{2\beta x} \bigg|_{x^{10}} \]

\[= 10! \sum_{k=0}^{10} \binom{4}{k} \frac{(2\beta)^k}{k!} e^{2\beta x} \bigg|_{x^{10}} = 0! \sum_{k=0}^{10} \frac{(-1)^{4-k} (2\beta)^k}{k!} \]

\[= \sum_{k=0}^{10} (-1)^{4-k} (2\beta + k)^{10} \]
9.1

Find a recurrence for the # of ways to arrange n dominoes to fill a $2 \times n$ checkerboard.

\[a_n = a_{n-1} + a_{n-2} \]

- $a_1 = 1$
- $a_2 = 2$

Fibonacci #15