Chapter 3
Covering Circuits and Graph Coloring

Multigraph: Multiple edges between vertices, loops also allowed.

Example:

Correct path $P = x_1 - x_2 - \cdots - x_n$

If a loop edge $x_n - x_i$ is added, we get a circuit.

Trail $T = x_i - x_m - \cdots - x_n$

Vertices may not be distinct (but edges cannot be repeated).

Sequence distinct vertices joined by edges.

Example:

$A \xrightarrow{k} B \xrightarrow{5} D \xrightarrow{r} B \xrightarrow{3} C$

Trail T becomes a cycle.

So $A \xrightarrow{k} B \xrightarrow{5} D \xrightarrow{r} B \xrightarrow{3} A$

is a cycle.
Königsberg Bridge Problem

Can a towns person walk from A and back again crossing each of the 7 bridges exactly once?

Euler

Can we find a cycle from A to A using each edge once? An Euler cycle is a cycle using each edge once and which visits each vertex once.

Preger River
A multigraph with an Euler cycle will have an even degree at each vertex; since each time the cycle passes through a vertex, it uses two edges (or loop counts and adding 2 to the degree of a vertex).

Then (Euler) A multigraph has an Euler circuit if it is connected and each vertex has even degree (assuming all vertices.

Algorithm to construct an Euler cycle: Start at any vertex A and trace out a trail. By even degree condition, we are never forced to stop at any vertex unless it is A, so our trail eventually ends at A. Let C = cycle thus generated, and G' = G with edges of C removed. G' may not be connected, but all vertices are of even degree. Note C and G' must have a common vertex or no path from A to vertex in G'. Let a' = common vertex. When trail reaches a', add side trail consisting of Euler cycle for connected component of G' starting and ending at a'.
A multigraph has an Euler trail, but not an Euler cycle, if it has exactly 2 vertices of odd degree (and is connected).

If \(G \) has an Euler trail, then the starting and ending vertex have odd degree, while other vertices have even degree, and \(G \) is connected.

Let \(G \) have exactly 2 vertices of odd degree, and \(G \) is connected. Add an extra edge \(F \) to \(G \) to obtain \(G' \). Then \(G' \) has an Euler circuit, and removing \(F \) from this yields an Euler trail in \(G \). \(\square \)
2.2 Hamilton Circuits

Hamilton circuits or paths are circuits and paths which visit each vertex exactly once.

Ex. Routing a delivery truck which must visit a set of stores.

Finding a Hamilton circuit or path is an NP-complete problem.

Note: If a graph has a Hamilton circuit, then any such Hamilton circuit must contain exactly 2 edges incident to each vertex. Furthermore:

Rule 1: If a vertex has degree 2, both of the edges incident to that vertex must be part of any Hamilton circuit.

Rule 2: No proper sub-circuit - that is, a circuit not containing all vertices - can be formed when building a Hamilton circuit.

Rule 3: Once the Hamilton circuit is required to use two given edges at a vertex x, all other (unused) edges incident to x must be removed from consideration.
Show this graph has no Hamilton circuit.

By Rule 1, b-a-c and e-f-i must be part of the circuit. Now consider vertex i; g-i must be part of circuit, so i-f or i-g must be (but not both). By symmetry, choose i-j or remove edge i-k.

Then j-k and k-h must be in circuit, so remove f-j; this forces b-f and e-f to be in circuit, remove d-e and e-h, forces c-h to be in circuit, remove c-d and b-d; no edge left to get to i.

Thm. (Dirac, 1952) A graph with \(n \) vertices, \(n \geq 3 \), has a Hamilton circuit if the degree of each vertex is \(\geq \frac{n}{2} \).

Thm. (Chvátal, 1972) Let \(G \) be a connected graph with \(n \) vertices, and let the vertices be indexed \(x_1, x_2, \ldots, x_n \), so that \(\deg(x_i) \leq \deg(x_{i+1}) \). If for each \(k \leq \frac{n}{2} \), either \(\deg(x_k) > k \) or \(\deg(x_{n-k}) > n-k \), then \(G \) has a Hamilton circuit.
If G is planar with Hamilton circuit H, let S be drawn in a plane way, and let $r_i = \#$ regions inside H bounded by i edges, and let $r_i' = \#$ regions outside the circuit bounded by i edges. Then $\sum (i-2)(r_i - r_i') = 0$.

Show graph has no Hamilton circuit

\[
\begin{align*}
r_4 + r_4' &= 3 \\
r_6 + r_6' &= 6 \\
2(r_4 - r_4') + 4(r_6 - r_6') &= 0
\end{align*}
\]

or $r_4 - r_4' + 2r_6 - 2r_6' = 0$

Now $r_4 - r_4'$ must be odd since $r_4 + r_4' = 3$. But $2r_6 - 2r_6'$ is even,

Def. A complete graph, where every edge is given a direction, is called a tournament. Then every tournament has a Hamilton path (cf. Induction on $\#$ vertices. Trivially true for $n=2$.}
Assume true for \(n-1, \ n \geq 3 \).

Remove vertex \(n \) from \(G \) to find Hamilton path

\[v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v_n \]

If \(v_{n-1} \rightarrow v_n \) done Else

\[v_1 \rightarrow v_{n-1} \text{ and } v_n \rightarrow v_{n-1} \]

New path

\[v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_i \rightarrow v_{n-1} \rightarrow v_n \rightarrow v_{n-1} \rightarrow \cdots \]

Ex. Gray Code: list elements of a set of elements where consecutive members of the list are as similar as possible. For example, subsets of \(\{1, 2, 3\} \)

Find a Hamilton Path in

This graph

\[000 \rightarrow 100 \rightarrow 110 \rightarrow 010 \rightarrow 011 \rightarrow 111 \rightarrow 101 \rightarrow 000 \]
2.3 Graph Coloring

- Assign colors to vertices so adjacent vertices have different colors. **Chromatic Number** = minimum # of colors needed for a given graph G, denoted \(\chi(G) \).
- NP-complete to find \(\chi(G) \) (and prove it)

ex.

![Graph]

\[\chi(G) = 3 \]

ex. Round Robin Tournament (each of n contestants plays each other). Schedule – each player can play at most once per day. What is minimum # of days?

Model by edge-coloring problem (edges with common vertex have different colors)

Days = colors
Since at most 2 games on any given day, and 10 edges, we need at least 5 colors.
ex. Find a graph on 7 vertices which is:
1. planar
2. 3-chromatic
3. No Euler cycle

3-chromatic no Euler cycle. Add an edge to get

Now its 3-chromatic.

ex. 11: How many colors are needed to color the 15 billiard balls so that touching balls are different colors?

Some vertices are adjacent to 6 others, so need at least 3 colors needed.

A three coloring.
2.4 Coloring Theorems

A polygon is a plane graph consisting of a single circuit with edges drawn in straight lines.

A polygon

Then a triangulation of a polygon can be 3-colored.

By induction on n, the number of vertices ($= \# \text{ edges}$) in polygon circuit $n = 3$ clear. Let T be a polygon with n edges. Pick a chord edge e, e.g., chord $(3, 5)$ in the figure above. Note T must have at least one chord edge, since $n \geq 4$. Chord e splits T into two smaller polygons; by induction each can be triangulated. Color both, choosing colors so edge e has same colors at end vertices (relabeling if needed).
The Art Gallery Problem

- place guards so that all the walls of an art gallery are watched. What is the minimum # of guards needed? Guards need to have a direct line of sight to every point on the walls. Guard at a corner is assumed to be able to see the two walls that end at the corner.

Thus, the Art Gallery Problem with n walls requires at most \(\lceil \frac{n}{3} \rceil \) guards.

Fl. Triangles + color with red, blue, and green.

Place a guard at each red vertex - this guard sees all sides of the triangle, so now each wall is viewed by...
a graph. If there are no cycles, then some color is used at most \(\sqrt{3} \) times.

Example where \(\sqrt{3} \) is needed:

```
\[\text{12 edges} \quad \text{Clearly need at least 4 guards}\]
```

Then, if a graph \(G \) is not an odd circuit or a complete graph, then \(\chi'(G) \leq d \), where \(d \) is the maximum degree of a vertex of \(G \).

Defn: Edge chromatic \(\chi' = \) minimum \# of colors needed to color edges so edges with common end vertex get different colors.

Thm 4: If max degree of a vertex in \(G \) is \(d \), then the edge chromatic \(\chi'(G) \) is either \(d \) or \(d+1 \).

Thm: Every planar graph can be 5-colored (can actually be 4-colored but proof very long)

Pf: See book page 80-81
For each in proof of Thm. 4. Any planar graph has a vertex of degree \(\leq 5 \).

Proof:

Assume not, then \(\sum_{v \in G} \deg(v) \geq 6V \).

But \(\sum_{v \in G} \deg(v) = 2e \) so \(2e \geq 6V \).

But \(e \leq 3V - 6 \).

So \(3V - 6 \geq e \geq 3V \) \(\Rightarrow 3V - 6 \geq 3V \) contradiction.

Chromatic Polynomial

Define \(P_k(G) \) = \# of ways to color a graph \(G \) with \(K \) colors.

Then \(P_k(G) \) is a polynomial in \(K \).

Proof: Given any coloring \(C \) of \(G \), form a set partition \(\Delta(C) \) by placing vertices with the same color in the same block. Conversely, given a set partition \(\Delta \) of \(G \) with the property that two vertices in the
same blocks are not adjacent, one can form a coloring $C(\lambda)$ by coloring vertices in the same block with the same color.

For each such λ with m blocks, there are $K(k-1) \cdot (k-m+1)$ ways to color the blocks with k colors. Thus

$$P_k(G) = \sum_{\lambda} K(k-1) \cdot (k-m+1)$$

where $m = \# \text{blocks of } \lambda$.

$$= \sum_{m} K(k-1) \cdot (k-m+1) \sum_{\text{blocks}} 1$$
\[P_k(G) = k(k-1)(k-2) 5 + k(k-1)(k-2)(k-3) 5 + k(k-1)(k-2)(k-3)(k-4) \]

Example: A connected graph with no circuits is called a **tree**. If \(T \) is a tree with \(n \) vertices, then \(P_k(T) = k(k-1)^{n-1} \).