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Abstract. We present a number of conjectures and open problems involving combinatorial
models for graded characters of the symmetric group associated to Macdonald polynomial
operators and diagonal coinvariant rings.
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1. Introduction

Given a polynomial f(x1, . . . , xn, y1, . . . , yn) ∈ C[x1, . . . xn, y1, . . . , yn], the symmetric
group Sn acts diagonally by permuting the xn := (x1, . . . , xn) and yn := (y1, . . . , yn) variables
identically, i.e.,

σf(x1, . . . , xn, y1, . . . , yn) = f(xσ1 , . . . , xσn , yσ1 , . . . , yσn) for all σ ∈ Sn. (1.1)
Let C2;n denote the diagonal coinvariant ring in two sets of variables, defined as the quotient

C2;n := C[xn,yn]/In(xn,yn), (1.2)
where In(xn,yn) is the ideal generated by all Sn-invariant polynomials in C[xn,yn] without
constant term.

The module C2;n can be decomposed into components bigraded by homogeneous xn and
yn degree (i.e. C2;n = ∑

i,j C
(i,j)
2;n ), and the action respects the bigrading. The Frobenius

characteristic of C2;n is defined as

C2;n(q, t; z) :=
∑
i,j≥0

qitj
∑
λ`n

sλ(z)Mult(λ,C(i,j)
2;n ), (1.3)
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where the inner sum is over all partitions λ of n, sλ is the Schur function, and Mult(λ,C(i,j)
2;n )

is the multiplicity of the irreducible Sn module corresponding to λ in the decomposition of
C

(i,j)
2;n into irreducible submodules.

Let ∇ denote the Bergeron-Garsia nabla operator [BG99], defined on the modified
Macdonald basis H̃µ(q, t; z) by

∇H̃µ(q, t; z) = TµH̃µ(q, t; z), (1.4)

where Tµ = Tµ(q, t) = ∏
(i,j)∈µ q

itj. If en = en(z) is the nth elementary symmetric function, a
famous theorem of Haiman [Hai01] says

∇(en(z)) = C2;n(q, t; z), (1.5)

which forms the bridge between the study of coinvariant rings and Macdonald polynomial
operators. In this article we will present a number of open problems associated to the
combinatorial structure of ∇en and related functions.

A central result in this direction is the Shuffle Theorem of Carlsson and Mellit [CM18].
First conjectured in [HHL+05], this result expresses ∇en as weighted sum over combinatorial
objects known as parking functions. The parking function model has been very successful
in describing the monomial expansion of a growing list of Macdonald polynomial operators
applied to various symmetric functions. Many of these expansions are known or conjectured
to be the Frobenius characteristic of a bigraded Sn module associated to a coinvariant ring
or other object of geometric interest.

One important example involves the Delta operators. For a given cell c = (i, j) in the
Ferrers diagram of µ, with (i, j) the Cartesian coordinates of the bottom-left corner of the
cell, we let the arm(c) and leg(c) denote the distances from c to the right and top border of
µ, respectively, as in Figure 1.

c

ℓ(c)

j

i a(c)

Figure 1. The arm a(c) and leg l(c) of a cell (i, j).

Define Bµ(q, t) as

Bµ(q, t) =
∑

(i,j)∈µ
qitj. (1.6)
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For example, B221(q, t) = 1 + q+ t+ qt+ t2. Now for a symmetric function f(z), define linear
operators ∆f and ∆′f via their values on the modified Macdonald basis as follows:

∆fH̃µ = f [Bµ(q, t)]H̃µ, (1.7)
∆′fH̃µ = f [Bµ(q, t)− 1]H̃µ. (1.8)

For example, ∆e2H̃221 = (q + t+ qt+ t2 + qt+ q2t+ qt2 + t2q + t3 + qt3)H̃221 and ∆′e2H̃221 =
(qt+ q2t+ qt2 + t2q + t3 + qt3)H̃221.

The Delta Conjecture from [HRW18] says that
n−1∑
k=0

un−1−k∆′eken(z) = Rise(n) (1.9)

= Valley(n), (1.10)

where Rise(n) and Valley(n) are two different weighted sums over parking functions, involving
parameters q, t, u in addition to a monomial term in the z variables. The equality of∑n−1
k=0 u

n−1−k∆′eken with Rise(n) and Valley(n) are known as the Rise version and Valley
version of the Delta Conjecture, respectively. Two different proofs of the Rise version have
recently been found. The first, due to D’Adderio and Mellit [DM22], proves a refinement of
the Rise version called the compositional Delta Conjecture. This refinement involves more
technical operators called Theta operators, which have found many applications and are the
subject of Section 9. The second proof is due to Blasiak, Haiman, Morse, Pun, and Seelinger
[BHM+23]. They give a combinatorial model for ∆hj∆′eken (the Extended Delta Conjecture
from [HRW18]), which reduces to the Rise version when j = 0. Here, hj is the complete
homogeneous symmetric function. Their proof uses properties of the Elliptic Hall algebra.
Neither the Extended Delta Conjecture or compositional Delta Conjecture imply the other.
The Valley version is still open; in Section 2 we describe the Delta Conjecture in detail and
highlight open problems associated to it. We mention that ∇en = ∆′en−1en, and the u = 0
case of either the Rise or Valley version reduces to the Shuffle Theorem.

Mike Zabrocki (see [Zab19]) has introduced an exciting conjecture linking Equation 1.9
to coinvariant algebras. On top of the above two sets xn,yn of commuting (i.e. bosonic)
variables, let vn be an n-set of anti-commuting (i.e. fermionic) variables, all of which commute
with the xi’s and yi’s. Zabrocki conjectures that

n−1∑
k=0

un−1−k∆′eken(z) (1.11)

equals the tri-graded Frobenius characteristic of the super diagonal coinvariant ring C2,1;n
under the diagonal action of Sn. Here C2,1;n is defined as

C2,1;n := C[xn,yn,vn]/In(xn,yn,vn), (1.12)

where In(xn,yn,vn) is the ideal generated by all Sn-invariant polynomials in C[xn,yn,vn],
without constant term. Then,

C2,1;n(q, t;u; z) :=
∑

i,j,k≥0
qitjuk

∑
λ`n

sλ(z)Mult(λ,C(i,j,k)
2,1;n ), (1.13)
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with C
(i,j,k)
2,1;n the homogeneous component of C2,1;n in degree i in xn, degree j in yn and

degree k in vn. A conjectured symmetric function expression, involving Theta operators, for
the quad-graded Frobenius characteristic of the diagonal coinvariant ring involving two sets
of bosonic variables and two sets of fermionic variables was introduced in [DIVW21], and is
described in Section 5.

Let v, z be two sets of variables. In a recent preprint on the arXiv [BHIR23], the authors
introduce a new linear operator, called the super nabla operator, denoted ∇v, which is defined
as

∇vH̃µ(q, t; z) = H̃µ(q, t; v)H̃µ(q, t; z). (1.14)

It is well-known that 〈H̃µ(q, t; z), sn−k,1k〉 = ek[Bµ(q, t) − 1], 0 ≤ k ≤ n − 1, which implies
that the coefficient of sn−k,1k(v) in ∇ven(z) equals ∆′eken(z). Hence ∇v contains the ∆′ek
operators as specializations. In [BHIR23] we conjecture that for sets of variables v1, . . . ,vj,
the symmetric function ∇v1 · · · ∇vjen(z) is Schur positive in all sets of variables. In Section 8
we give a few combinatorial models for the monomial expansion of ∇v1 · · · ∇vjen(z) when
t = 1, and discuss several associated open problems, such as finding a t-statistic to incorporate
into one or more of our models to give ∇v1 · · · ∇vjen(z) for general t.

As the first author has shown [Ber13b], [Ber], [Ber22] there is a GLn action on C2;n which
allows one to view the coefficient of a given Schur function sλ(z) in ∇en(z) as a positive sum
of Schur functions in the variable set {q, t}. This property extends to multiple bosonic and
fermionic sets of variables, and allows one to express formulas and conjectures involving these
coefficients compactly. Sections 3, 4, 5 and 6 contain a discussion of open problems involving
this general setup. One intriguing conjecture in Section 4 we might highlight here is that the
Frobenius characteristic for the k-bosonic, k-fermionic set of variables diagonal coinvariant
module can be obtained from the Frobenius characteristic for the k-bosonic case by a simple
plethystic substitutiion.

2. The Delta Conjecture

A Dyck path is a lattice path from (0, 0) to (n, n) consisting of unit North and East steps
which never go below the line y = x. A parking function P is a Dyck path π together with a
placement of “cars”(the integers 1 through n) just to the right of the north steps of π, with
strict decrease down columns, as in Figure 2. Here the first column of numbers to the right
of the figure are the row lengths; ai is the number of complete squares to the right of the
path and left of the main diagonal (the line y = x) in rowi (the ith row from the bottom).
The di values are more complicated. We call a pair (i, j) of rows, where 1 ≤ i < j ≤ n, an
inversion pair if either

1) ai = aj and the car in rowi is less than the car in rowj, or

2) ai = aj + 1, and the car in rowi is greater than the car in rowj.

For example, for P as in Figure 2, the inversion pairs are

{(3, 7), (4, 5), (4, 7), (5, 7), (6, 7)}.
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We let di(P ) denote the number of inversion pairs involving rowi and rows above it, and set
area(P ) = area(π) = ∑

i ai and dinv(P ) = ∑
i di.
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Figure 2. A parking function P with its ai and di values. Here area(P ) = 12
and dinv(P ) = 5

Next define the reading order of the rows of π to be the order in which the rows are listed
by decreasing value of ai, where if two rows have the same length, the row above is listed
first. For the path π above, the reading order is

row6, row7, row5, row4, row3, row2, row1. (2.1)

For a given P , let the reading word of P , denoted read(P ), be the list of cars, as they appear
in reading order. For P as in Figure 2, the reading word is 7643521. Furthermore, if for i
in the range 1 < i ≤ n rowi contains a car at the bottom of a column, call rowi a moveable
valley if either ai < ai−1 or ai = ai−1 and the car in rowi is greater than the car in rowi−1.
Geometrically, rowi is a moveable valley if we can shift the car in rowi one square to the left
and still have a parking function.

Conjecture 1 (The Delta Conjecture [HRW18]). For any integer k, 0 ≤ k ≤ n− 1,

∆′eken =
∑
π

∑
P∈PF(π)

tarea(π)qdinv(P )FDes(read(P )−1)
∏

ai>ai−1
1<i≤n

(1 + u/tai)
∣∣∣∣
un−1−k

(2.2)

=
∑
π

∑
P∈PF(π)

tarea(π)qdinv(P )FDes(read(P )−1)
∏

moveable valleys for P

(1 + u/tdi+1)
∣∣∣∣
un−1−k

, (2.3)

where PF(π) is the set of parking functions for the path π, Des(σ) is the descent set of a
permutation σ, and F is Gessel’s fundamental quasisymmetric function associated to the set
Des(read(P )−1). (Readers unfamiliar with Gessel’s F’s can consult [Hag08, Chapter 6] for
examples and definitions.)

The case k = 0 of (2.2) is the Shuffle Theorem of Carlsson and Mellit [CM18]. Eq. (2.2)
is known as the Rise version, and (2.3) the Valley version. As mentioned in Section 1, the
Rise version has been proved, but the Valley version is still open. In fact, there is still no
proof that the right-hand-side of (2.3) is even a symmetric function.
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One might ask whether or not proving the Valley version is important, given the truth of
the Rise version, but there are some definite advantages to working with the Valley version.
For example, the second author and E. Sergel have shown the Valley version satisfies a
“schedules formula” [HS21], which generalizes the well-known schedules formula for ∇en
[HL05]. This formula was used by Carlsson and Oblomkov in obtaining their beautiful
monomial basis for C2;n [CO18]. The paper [HS21] contains a candidate basis for the super
case C2,1;n, modeled on the Carlsson-Oblomkov C2;n basis and corresponding schedules
formula for the Valley version. In addition, the Valley version is naturally connected to one of
our combinatorial models for the monomial expansion of ∇ven(z) (see Figure 5 in Section 8).

3. General setup

As mentioned in the Introduction, much interesting work has been done recently on
diagonal coinvariant spaces in both commuting and anticommuting variables. See for in-
stance [OZ20, SW21, Wal19]. The purpose of this short note is to present a general conjecture
expressing the fact that one can simply calculate all cases of multivariate diagonal coinvariant
modules in k sets of n commuting variables (bosons), and j sets of n anticommuting variables
(fermions), just from the generic case of multivariate diagonal coinvariant spaces.

Let B = (βab) and F = (ϕcd) be matrices of variables of respective dimensions k× n and
j×n. One may even assume that k and j are infinite. The (bosonic) variables in B commute
with all variables (both those in B and F ), whereas the (fermionic or grassmanian) variables
F are anticommuting among themselves, i.e. for ϕ and ϕ′ in F one has ϕϕ′ = −ϕ′ϕ. We
consider that the ring of polynomials Rn = Rk,j;n := Q[B; F ] is equipped with the group
action (expressed here with matrix multiplication)

f(B; F ) 7−→ f(P B σ;QF σ),
with P and Q lying respectively in GLk and GLj, whilst elements σ of Sn are considered as
n× n permutation matrices. One says that σ acts diagonally on the B and F variables, and
the three actions commute.

Definition 1. Denoting by RSn
n the subring (of Rn) consisting of Sn-invariants of Rn, the

general boson-fermion diagonal coinvariant module is defined to be the quotient
Ck,j;n := Rk,j;n/〈RSn

+ 〉,
where RSn

+ stands for the constant term free portion of RSn
n . Since RSn

+ is globally invariant
under the action of G = GLk ×GLj × Sn, there is an induced action of G on Ck,j;n.

Consider any V which is a G-submodule (or stable quotient module) of Rk,j;n. As is well
known, the decomposition of V into irreducibles is entirely encoded in the symmetric function
expression1

V(q; u; z) :=
∑
µ`n

(∑
λ,ρ

vλρµ sλ(q)sρ(u)
)
sµ(z), (3.1)

where sλ(q) and sρ(u) are respectively characters for (polynomial) irreducible representations
of GLk and GLj expressed as functions of the “parameters” q = q1, . . . , qk and u = u1, . . . , uj ;

1Observe that various sets of variables are separated by semi-colons.
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and sµ(z) is the Frobenius transform of an Sn-irreducible, in the variables z = z1, z2, . . .. The
graded hilbert series (or (GLk ×GLj)-character) of V is:

V(q; u) := 〈V(q; u; z), p1(z)n〉

=
∑
µ`n

(∑
λ,ρ

vλρµ sλ(q)sρ(u)
)
fµ, (3.2)

where fµ = 〈sµ, pn1 〉 is the dimension of the irreducible associated to sµ, which is well known
to be equal to the number of standard tableaux of shape µ. For the modules that we consider,
the coefficients vλρµ do not depend on k and j. The dependence on k and j is rather reflected
in the fact that some of the functions sλ(q) and sρ(u) when the number of variables is too
small, i.e. k (resp. j) is less than the number of parts of λ (resp. ρ). In other words, the
stable expression for V(q; u; z) is obtained whenever k and j become large enough2. Such
modules are said to be coefficient stable.

When this is the case, it is often useful to write Equation 3.1 in the form of a “variable
free” expression:

V :=
∑
µ`n

(∑
λ,ρ

vλρµ sλ ⊗ sρ
)
⊗ sµ.

For the module Cn = Ck,j;n, the analogous coefficients are denoted cλρµ , and thus

Cn(q; u; z) =
∑
µ`n

(∑
λ,ρ

cλρµ sλ(q)sρ(u)
)
sµ(z), (3.3)

=
∑
µ`n

cµ(q; u)sµ(z), (3.4)

so that the (GLk ×GLj)-characters cµ(q; u) are the weighted multiplicities of Sn-irreducibles
in Cn.

3.1. Structure of the boson-fermion ring of polynomials. Using plethystic notation3,
and the notations

Ω(q) :=
k∏
i=1

1
1− qi

=
∑
n≥0

hn(q) and Ω′(u) :=
j∏
i=1

1 + ui =
∑
n≥0

en(u),

we have the following.

Proposition 1. For all n, the Frobenius characteristic of the ring of polynomials in bosonic
and fermionic variables is given by the formula

Rn(q; u; z) = hn[Ω(q) Ω′(u) z]. (3.5)

In preparation for what follows, we recall the plethystic identity
Ω[q − εu] =

∑
n≥0

∑
k+j=n

hk(q)ej(u) (3.6)

= Ω(q) Ω′(u). (3.7)

2It is sufficient to take k larger or equal to n, since this holds for the whole space of polynomials.
3See [Ber09] for notions not described here.
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By definition, ε is such that pi[ε] = (−1)i, so that pi[−ε u] = ω pi(u). In particular, the
classical summation formula for Schur functions gives

sλ[q − εu] =
∑
ν⊆λ

sν(q)sλ′/ν′(u).

Exploiting the usual Hall scalar product on symmetric function in z, we may consider the
coefficient rµ(q; u) := 〈Rn(q; u; z), sµ(z)〉 of sµ in Rn. In other terms, the rµ(q; u)’s
encode the weighted multiplicities4 of the various Sn-isotypic components of Rn. Again
as a variable free expression, we write

rµ := 〈Rn, sµ〉 =
∑
λ,ρ

rλρµ sλ ⊗ sρ,

and likewise for any coefficient stable G-module V :

vµ := 〈V , sµ〉 =
∑
λ,ρ

vλρµ sλ ⊗ sρ,

It is clear that the rµ form an upper bound for all vµ, so that

0 ≤ vλρµ ≤ rλρµ , for all λ, ρ, and µ.

Thus it is interesting to observe that the Cauchy kernel formula implies that

Corollary 3.1. When j = 0, the coefficient rµ(q) of sµ(z) in Rn(q; 0; z) is given by the
formula

rµ(q) = sµ[Ω(q)]
= sµ[∑i≥0 hi(q)]. (3.8)

Since rµ(q) is a symmetric function in q, we have a Schur expansion

rµ(q) =
∑
λ

cµλsλ(q).

One interesting question associated to this expansion is the so-called restriction problem:
View the GLk-character sµ(q) as a character of Sk by restricting to the set of permutation
matrices in GLk. Then cµλ is the multiplicity of the Sk-irreducible character indexed by λ.
Therefore, one could solve the problem of describing the restriction of GLk characters to Sk
by producing a combinatorial description for the Schur expansion of rµ(q).

4. From boson to boson-fermion

As shown in [Ber13a], there exist a coefficient stable expression for the Frobenius charac-
teristic of the “pure bosonic” (commuting variables) multivariate coinvariant module, which
we denote by

En =
∑
µ`n

aµ ⊗ sµ, with aµ :=
∑
λ

aλµ sλ.

4With the qi and uj respectively keeping track of homogeneous components in bosonic and fermionic
variable ssets.
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The integers aλµ are non-vanishing only for partitions λ of size at most
(
n
2

)
− η(µ′), and having

at most n− µ1 parts. Recall that η(µ) := ∑
i µi (i− 1). Expressed in terms of variables, the

above expression takes the form
En(q; z) =

∑
µ`n

(∑
λ

aλµ sλ(q)
)
sµ(z) (4.1)

=
∑
µ`n

(∑
λ

aλµ sλ
)
⊗ sµ.

Our main conjecture is that
Conjecture 2 (Boson-Fermion Frobenius). The multigraded Frobenius characteristic of
the boson-fermion diagonal module may be directly calculated from the generic Frobenius
characteristic for bosons modules via the universal formula

Cn(q; u; z) = En(q − εu; z)
=
∑
µ`n

aµ[q − εu] sµ(z)

=
∑
µ`n

(∑
λ

aλµ sλ[q − εu]
)
sµ(z). (4.2)

In other words cµ(q; u) = aµ[q − εu].

Thus, the (k, j)-multi-degree enumeration (or GLk × GLj-character) of the Sn-irreducible
component of type µ in Cn is obtained as

aµ[q − εu] =
∑
λ

aλµ sλ[q − εu]

=
∑
λ

aλµ
∑
ν⊆λ

sν(q1, . . . , qk)sλ′/ν′(u1, . . . , uj). (4.3)

Observe that the specification of k and j in Ck,j;n(q; u; z) is redundant once the parameters
q = q1, . . . , qk and u = u1, . . . , uj are specified. We may thus omit them and present the
generic diagonal Boson-Fermion Frobenius in the form

Cn =
∑
µ`n

∑
λ

aλµ
(∑
ν⊆λ

sν ⊗ sλ′/ν′
)
⊗ sµ. (4.4)

Clearly, we have
Cn(q; 0; z) = ĥn(z)/ĥn(1), with f̂(z) := f [z/(1− q)], (4.5)

Cn(0;u; z) =
n−1∑
a=0

ua s(n−a,1a)(z), (4.6)

Cn(q + t; 0; z) = ∇(en)(q, t; z), (4.7)

Cn(q1, . . . , qk; 0; z) = En(q1, . . . , qk; z), (4.8)

Cn(0;u1, . . . , uj; z) =
∑
µ`n

(∑
λ

aλµ sλ′(u1, . . . , uj)
)
sµ(z), (4.9)

where the ∇ operator occurring in Equation 4.7 is the Macdonald “eigenoperator” introduced
in Section 1.
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5. Special cases

It has been conjectured5 in [BPR12] that
Cn(1 + q + t; 0; z) =

∑
α�β

qdist(α,β) Lβ(t; z), (5.1)

where the sum is over pairs of elements of the Tamari lattice, and dist(α, β) is the length of
the longest chain going from α to β. Here, Lβ(t; z) stands for the LLT-polynomial associated
to the Dyck-path β (see [GLk20] for more details). Furthermore, it has been conjectured by
N. Bergeron-Machacek-Zabrocki6 that

Cn(q;u; z) =
n−1∑
k=0

∑
λ`n

∑
τ∈SYT(λ)

qα(τ)
[
des(τ)
k

]
q

uk sλ(z), (5.2)

where, for a standard tableau τ of shape λ, one sets

α(τ) := maj(τ)− k des(τ) +
(
k

2

)
.

In [KR22], Kim and Rhoades show that

Cn(0;u+ v; z) =
∑

a+b≤n−1
ua vb

(
s(n−a,1a) ? s(n−b,1b)− s(n−(a−1),1a−1) ? s(n−(b−1),1b−1)

)
(z), (5.3)

with “?” standing for the Kronecker product. Denoting by gµα,β the Kronecker coefficients:
gµα,β := 〈sα ? sβ, sµ〉,

one may reformulate the above as

Cn(0;u+ v; z) =
∑
µ`n

 ∑
b+d≤n−1

ub vd (gµ(a | b),(c | d) − g
µ
(a+1 | b−1),(c+1 | d−1))

 sµ(z), (5.4)

using the Frobenius notation (a | b) = (a+ 1, 1b) for hook-shaped partitions. For each term in
the inner sum above, we assume that a+ b = n− 1 (likewise for c and d). The differences
are know to be positive (see [Rem89]). The various results (see [SS16]) on the stability of
Kronecker coefficients certainly have a bearing here, since they imply corresponding stabilities
for the coefficients of the sµ.

In Section 1 we mentioned that Zabrocki has conjectured

Cn(q + t;u; z) =
n−1∑
a=0

ua∆′en−a−1(en(z)). (5.5)

The parameters q and t arise from the application of the operators ∆′ek . It follows that
Equation 5.2 may also be written as

Cn(q;u; z) =
n−1∑
a=0

ua∆′en−a−1(en(z))
∣∣∣∣
t=0
. (5.6)

5Notice that one of the parameters is equal to 1. This is because the lacking “statistic” on Dyck-path
pairs (α, β) is not yet known.

6In fact, this follows from Equation 5.5, via a formula of Haglund, Rhoades and Shimozono (see [HRS18]).
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Finally, we have

Cn(1; 2; z) = 1
2
∑
µ`n

2`(µ)(−1)n−`(µ)
(

`(µ)
d1, . . . , dn

)
pµ(z), (5.7)

where di = di(µ) stands for the number of parts of of size i in µ. Equivalently, in terms of
the elementary basis, one has the following: Denote the set of all compositions whose parts
rearrange to µ by by R(µ). Then

Cn(1; 2; z) =
∑
µ`n

eµ(z)
∑

α∈R(µ)
α1(2α2 − 1) · · · (2α`(α) − 1). (5.8)

Finally, D’Adderio-Iraci-Wyngaerd conjecture in [DIVW21, Conj. 8.2.] the more inclusive
identity:

Cn(q + t;u+ v; z) =
n−1∑
k=1

∑
i+j=k

uivjΘeiej∇(en−k),

=
n−1∑
k=0

Θek[(u+v)z](∇(en−k)) (5.9)

where, for any symmetric functions g and f , Θgf is defined as
Θgf(z) := Π g∗Π−1f(z), setting g∗(z) := g[z/(1− t)(1− q)].

Here, Π stands for the Macdonald eigenoperator having as eigenvalues for H̃µ the product∏
(i,j)∈µ/(1)(1− qitj), for (i, j) running over cartesian coordinates of cells in µ (omitting the

cell (0, 0)).
Π H̃µ(q + t; z) :=

∏
(i,j)∈µ/(1)

(1− qitj) H̃µ(q + t; z).

It should be apparent that Equation 5.9 specializes at u = v = 0 to give ∇en, the diagonal
coinvariant case mentioned in Section 1, proved by Mark Haiman [Hai01]. When q = t = 0,
it was shown in [IRR22] that Equation 5.9 specializes to Equation 5.3. However, at this time,
it seems no other specialization is known to hold.

Table 1 summarizes the overall situation7. Conjecture 2 essentially states that all entries

k \ j 0 1 2 · · · j

0 1 (4.6) (5.3) · · · (4.9)
1 (4.5) (5.2) (5.7) · · ·
2 (4.7) (5.5) (5.9) · · ·
3 (5.1) · · ·
... ... ... ... . . . ...
k (4.8) · · · (4.4)

Table 1. Overall situation for the various formulas.

of Table 1 may be obtained from Equation 4.8 (or equivalently from Equation 4.9). It is
interesting to observe that one obtains polynomial expressions in k and j, when setting all

7With k standing for the numbers of sets of commuting variables, and j for those that are anticommuting.
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parameters qi = 1 and uj = 1. More precisely, writing Cn(k; j; z) for the resulting expression,
we have the following.
Proposition 2. The coefficients of each sµ(z), in the Schur expansion of Cn(k; j; z), is a
polynomial in k and j, with coefficients in Q. Hence, this is also the case for the associated
dimension8 Cn(k; j).

6. Links with the main conjecture

The conjecture of Equation 5.5 directly led to our main conjecture, in view of an elegant
link (first stated in 2017, but only recently published) between the generic expression for En
and the effect of the ∆′ek operators on en. The precise relevant statement (see [GLk20, Conj.
1]) says that
Conjecture 3 (Delta via skew). For all a,(

(e⊥a ⊗ Id) En
)

(q + t; z) =
∑
µ`n

(e⊥a aµ)(q + t) sµ(z)

= ∆′en−a−1(en(z)). (6.1)

In other words, we get ∆′en−a−1(en(z)) from En, first by applying the skew operator e⊥a to the
various sλ, and then by evaluation of the resulting expression in q, t. To see how this relates to
our general conjecture, we recall that the effect on a symmetric function f(q) = f(q1, . . . , qk)
of the operator ∑n−1

a=0 u
ae⊥a may be simply expressed in plethystic notation as

n−1∑
a=0

uae⊥a f(q) = f [q − ε u].

Thus, assuming that Conjecture 3 holds, we see that Equation 5.5 may be coined as
Cn(q + t;u; z) = En[q + t− ε u; z].

This immediately9 suggested that the more general formula of Conjecture 2 should hold. All
experiments confirmed this. Moreover, it agrees with all known or conjectured formulas (due
to various researchers) for the dimensions of Cn(k; j) as functions of n. These are displayed
in Table 2. Here,

{
n
k

}
stands for the Stirling numbers of the second kind. Currently known or

conjectured formulas for the multiplicities of alternating component in Cn appear in Table 3,
where s(n) = 1

n

∑n−1
i=0

(
n
i

) (
n
i+1

)
2i denotes the nth small Schröder number, and Fn stands for

the nth Fibonacci number.

Formulas for low degree components of the corresponding general expressions have also
been conjectured to hold. The first of these, see [Ber13a], states that

Cn(q; 0; z) =(n)
hn[Ω(q) z]
hn[Ω(q)] , (6.2)

where Ω(q) = 1 + h1(q) + h2(q) + . . .; with equality holding for terms of degree at most n in
the q variables. It may be worth recalling here that, when q consists of only one variable,

8Obtained by replacing each sµ(z) by the number, fµ, of standard tableaux of shape µ.
9During the January 2019 Banff meeting where Mike Zabrocki presented his conjecture for the first time.
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k \ j 0 1 2

0 1 2n−1
(

2n−1
n

)
1 n! ∑n

i=1 i!
{
n
i

}
2n−1 n!

2 (n+ 1)n−1 ∑n+1
i=0

(
n+1
i

)
in

2(n+1) ?

3 2n(n+ 1)n−2 ? ?

Table 2. Dimensions of Cn(k; j).

k \ j 0 1 2 3

0 0 1 n n2 − n+ 1

1 1 2n−1 3n−1 2−1F3n−1

2 1
n+1

(
2n
n

)
s(n) 2n−1

n+1

(
2n
n

)
?

3 2
n(n+1)

(
4n+1
n−1

)
? ? ?

Table 3. Coefficients of s1n(z) in Cn(k; j; z).

the above is well known to be an equality. Indeed, this the symmetric group case of the
Chevalley-Shephard-Todd theorem.

A slightly stronger form of a conjecture stated in [DIVW21], is that the difference

δn(q + t,u; z) := Cn(q + t; u; z)−
n−1∑
k=0

Θek[uz](∇(en−k)) (6.3)

is Schur positive in all three sets of variables: u = {u1, u2, . . . , ur} (for any r), z, and {q, t}.
Furthermore, the expression ∑n−1

k=0 Θek[uz](∇(en−k)) is itself Schur positive in all three sets of
variables. For small values of n, we have

δ2(q + t; u; z) = 0,
δ3(q + t; u; z) = s111(u) s111(z),
δ4(q + t; u; z) = s1111(u) s22(z)

+ (s11111(u) + (q + t+ 1) (s111(u) + s1111(u)) + s211(u)) s211(z)
+ (s111111(u) + (q + t) s11111(u) + s2111(u) + (q + t+ 1) s211(u)

+
(
q2 + qt+ t2 + q + t

)
(s111(u) + s1111(u))) s1111(z).

It is interesting to observe, in view of our main conjecture, that a similar approximation
Θ-formula may be given for the purely commuting variables context. More precisely, the
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corresponding statement is that the difference

δ′n(q + t+ q; z) := En[q + t+ q; z]−
n−1∑
k=0

Θhk[q z](∇(en−k)) (6.4)

is always Schur positive. For small values of n, we have

δ′2(q + t+ q; z) = 0,
δ′3(q + t+ q; z) = s3(q) s111(z),
δ′4(q + t+ q; z) = s4(q) s22(z)

+ (s5(q) + (q + t+ 1) (s3(q) + s4(q)) + s31(q)) s211(z)
+ (s6(q) + (q + t) s5(q) + s41(q) + (q + t+ 1) s31(q)

+
(
q2 + qt+ t2 + q + t

)
(s3(q) + s4(q))) s1111(z).

Clearly, one goes from δn to δ′n by replacing the sµ(u)’s by corresponding sµ′(q). We also
get the “approximation”

T (u; z) :=
n−1∑
k=0

Θek[uz](∇(en−k)(z))
∣∣∣
q=t=0

, (6.5)

of Cn(0; u; z), by setting q = t = 0 in Equation 6.3; as well as an equivalent approximation
for Cn(q; 0; z), simply by replacing all sµ(u)’s by sµ′(q).

7. An explicit example

With n = 3, we have
E3 = 1⊗ s3 + (s1 + s2)⊗ s21 + (s11 + s3)⊗ s111,

hence
C3 = (1⊗ 1)⊗ s3 + ((s1 + s2)⊗ 1 + s1 ⊗ s1 + 1⊗ (s1 + s11))⊗ s21

+ ((s11 + s3)⊗ 1 + (s1 + s2)⊗ s1 + s1 ⊗ s11 + 1⊗ (s2 + s111))⊗ s111.

The above general formula specializes as:

C3(q + t;u+ v; z) = s3(z) +
(
(q2 + qt+ t2) + (q + t)(u+ v) + (u+ v + uv)

)
s21(z)

+
(
(q3 + q2t+ qt2 + t3 + qt) + (q2 + qt+ t2 + q + t)(u+ v)

+ (q + t)uv + (u2 + uv + v2 + 0)
)
s111(z).

Observe in this last expression that there is no contribution for the term s111, as it is evaluated
in only two variables. Observe also that the two special cases

C3(q; 0; z) = s3(z) + (s1(q) + s2(q)) s21(z) + (s11(q) + s3(q)) s111(z),

C3(0; u; z) = s3(z) + (s1(u) + s11(u)) s21(z) + (s2(u) + s111(u)) s111(z),
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may be deduced from each other. In other words, the general boson world knows the fermion
one; and vice-versa.

The polynomial expressions of the (k, j)-dimension10 and the Frobenius characteristic for
C3 are, respectively,

C3(k; j) = 1
6(k + j + 1) (k2 + 2 k j + j2 + 11 k + 5 j + 6) and

C3(k; j; z) = s3(z) + 1
2(k2 + 2 k j + j2 + 3 k + j) s21(z)

+ 1
6(k3 + 3 k2j + 3 k j2 + j3 + 6 k2 + 6 k j − k + 5 j) s111(z).

Explicit dimensions values for n = 3, 4, and 5:

n = 3 0 1 2

0 1 4 10

1 6 13 23

2 16 28 45

3 32 50 74

n = 4 0 1 2

0 1 8 35

1 24 75 192

2 125 288 597

3 400 785 1440

n = 5 0 1 2

0 1 16 126

1 120 541 1920

2 1296 3936 10541

3 6912 17072 38912

8. Multilabeled paths

We start by describing monomial expansions for super nabla operators.

A kn-Dyck path D ∈ Dkn is a sequence of North (N) and East (E) unit steps from (0, 0)
to (kn, n) which stay weakly above the main diagonal line y = kx. Alternatively, D is a path
which only touches the path E(EkN)n at the beginning and end. Denote by area(D) the
number of complete lattice cells between D and the main diagonal. A multilabeled Dyck path
P ∈ MDkn is a pair (D,w) where D ∈ Dkn and w is a word w = w1w2 · · ·wn, whose letters
are themselves words wi = (wi1, . . . , wik+1) ∈ Nk+1

+ of length k+ 1 satisfying the following rule:

(the number of East steps in D along the line y = i) ≥ #{j : wij ≥ wi+1
j } (8.1)

We view wi as the labels associated to the i-th North step in P . For instance, Figure 8 gives
a multilabeled Dyck path P ∈ MD35 .

To every P = (D,w) ∈ MDkn we associate the monomial weight

X P =
n∏
i=1

v1,wi1 · · · vk,wikzwik+1
;

and the area of P is given by area(P ) = area(D).

10Setting q = (1, 1, . . . , 1)︸ ︷︷ ︸
k copies

and u = (1, 1, . . . , 1)︸ ︷︷ ︸
j copies

.
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2233

1122

2211

3533

Figure 3. A multilabeled 35-Dyck path with area 11 and monomial weight
y2

1,1y
2
1,2y1,3y

2
2,1y

2
2,2y2,5y

2
3,1y3,2y

2
3,3z1z

2
2z

2
3 .

Proposition 3 ([BHIR23]). For any n and k,

∇v1 · · · ∇vken(z)
∣∣∣∣
t=1

=
∑

P∈MDkn
qarea(P )X P . (8.2)

This leads to our first open problem regarding multilabeled paths:
Conjecture 4. There exists a statistic d : MDkn → N which gives

∇v1 · · · ∇vken(z) =
∑

P∈MDkn
qarea(P )td(P )X P . (8.3)

A path EEα1NEα2N · · ·EαnN is called a γ, kn-staircase if (α1 − k, . . . , αn − k) is a
rearrangement of γ, 0n−`(γ). A pair of lattice paths (D1, D2) is a γ, kn-Dyck path if D2 is a
γ, kn-staircase, and D1 touches D2 only at the beginning and end. The area of (D1, D2) is
given by the number of lattice cells between the two paths that never touch the bottom path,
D2. A labeled γ, kn-Dyck path is a pair P = ((D1, D2), w) ∈ MDγ,kn where (D1, D2) is a
γ, kn-Dyck path, and w is a word satisfying the same multilabeling rule stated in Equation 8.1.
The area of P , area(P ), is the area of (D1, D2). The return of P , ret(P ), is the first i for
which D1 and D2 are one unit apart along the line y = i. Let RMDγ,kn be the set of pairs
(P, r) with P ∈ MDγ,kn and 1 ≤ r ≤ ret(P ). This is the set of multilabeled γ, kn-Dyck
paths with a marked row before the return of P . For instance, Figure 8 gives a multilabeled
γ, kn-Dyck path with γ = (2, 1), k = 2, and return 4. The circle in row 3 represents the
choice of r = 3 for the pair (P, 3) ∈ RMD(2,1),26 .

Proposition 4 ([BHIR23]). For any n, k, and nonempty partition γ,

∆mγ∇v1 · · · ∇vk(−1)n−1pn(z)
∣∣∣∣
t=1

=
∑

P∈RMDγ,kn
qarea(P )X P .

This leads to another open question.
Conjecture 5. There exists a statistic d : RMDγ,kn → N which gives

∇∇v1 · · · ∇vk(−1)n−1pn(z) =
∑

P∈RMD1n,kn

qarea(P )td(P )X P .
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112

234

123

335

121

222222

Figure 4. A multilabeled (2, 1), 26-Dyck path with area 10 and monomial
weight v3

1,1v
2
1,2v1,3v2,1v

3
2,2v

2
2,3z1z

2
2z3z4z5.The unfilled circles represent other po-

tential choices for a mark.

8.1. Schur expansions. Given a standard tableau T ∈ SYT(λ) of shape λ ` n, we can
construct a lattice word r = (r1, . . . , rn) by letting ri be the row of λ in which i appears. In such
a case, we would write λ(r) = λ. For instance, λ(1, 2, 1, 3, 2, 1) = (3, 2, 1). All lattice words
are attained in this way. Given a labeling w = w1 · · ·wn, where wi = (wi1, . . . , wik+1) ∈ Nk+1

+ ,
we say that w is lattice if for every j, (w1

j , w
2
j , . . . , w

n
j ) is a lattice word. A lattice multilabeled

γ, kn-Dyck path is a multilabeled γ, kn-Dyck path whose labeling is lattice; the collection of all
such multilabeled paths is denoted by LMDγ,kn . Given a lattice multilabeled γ, kn-Dyck path
P with labelling w, we will denote λ(w1

j , w
2
j , . . . , w

n
j ) by λj(P ). We then have the following

results.
Proposition 5 ([BHIR23]). For any n and k,

∇v1 · · · ∇vken(z)
∣∣∣∣
t=1

=
∑

P∈LMDkn
qarea(P )sλ1(P )(v1) · · · sλk(P )(vk)sλk+1(P )(z).

For any nonempty partition γ,

∆mγ∇v1 · · · ∇vk(−1)n−1pn(z)
∣∣∣∣
t=1

=
∑

P∈RLMDγ,kn
qarea(P )sλ1(P )(v1) · · · sλk(P )(vk)sλk+1(P )(z).

This again, leads to the following open question.
Conjecture 6. The symmetric functions ∇v1 · · · ∇vken(z) and ∆sν∇v1 · · · ∇vk(−1)n−1pn(z)
(for nonempty partitions ν) are simultaneously Schur positive in each set of variables. Fur-
thermore, this would imply that there exists statistics d, dR such that

∇v1 · · · ∇vken(z) =
∑

P∈LMDkn
qarea(P )td(P )sλ1(P )(v1) · · · sλk(P )(vk)sλk+1(P )(z).

and
∆sν∇v1 · · ·∇vk(−1)n−1pn(z)

=
∑
γ`|ν|

∑
T∈SSYT(ν,γ)

∑
P∈RLMDkn

qarea(P )tdR(P,T )sλ1(P )(v1) · · · sλk(P )(vk)sλk+1(P )(z).
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In the second summation, T ∈ SSYT(ν, γ) ranges over all semistandard tableaux T of shape
ν with content 1γ12γ2 · · · .

8.2. e-Positivties when q = 1 + u. One of the remarkable positivities regarding these
operators is an e-positivity phenomenon which occurs when we set q = 1+u. To best describe
this e-positivity, we first go back to the definition of multilabeled kn-Dyck paths. Let MDr

kn

be the set of multilabeled Dyck paths whose labels have r components. We can also define
the set LMDr

kn to be the subset of MDr
kn in which the labels are lattice. Given an element

P ∈ MDr
kn we construct a composition η(P ) as follows:

Suppose the top path of P is given by Na1Eb1 · · ·NakEak , where all ai and bi are nonzero;
and let w = w1 · · ·wn be the sequence of labels when read from bottom to top. Let ci be the
number of nonascents between wi and wi+1:

ci = #{j : wij ≥ wi+1
j }.

Construct a new path Na1Eb1−c1Na2Eb2−c2 · · ·NakEak = Na′1Eb′1 · · ·Na′rEb′r , where all a′i and
b′i are nonzero. Then define η(P ) = (a′1, . . . , a′r).

We now let Area(P ) denote the set of area cells of P . Then we can rewrite Proposition 3
as follows:

∇v1 · · · ∇vken(z)
∣∣∣∣
t=1

=
∑

P∈LMDkkn

q|Area(P )|sλ1(P )(v1) · · · sλk(P )(vk)eη(P )(z) (8.4)

The e-positivity phenomenon would give the following conjecture.

Conjecture 7. There exists a statistic d such that for any n and k, we have

∇v1 · · · ∇vken(z)
∣∣∣∣
q=1+u

=
∑

P∈LMDkkn

∑
S⊆Area(P )

u|S|td(P,S)sλ1(P )(v1) · · · sλk(P )(vk)eη(P )(z)

A similar e-positivity can be found for applications to power sums.

Conjecture 8. There exists a statistic dR such that for any n and k, we have

∇v1 · · · ∇vk∇(−1)n−1pn(z)
∣∣∣∣
q=1+u

=
∑

P∈RLMDk1n,kn

∑
S⊆Area(P )

u|S|td(P,S)sλ1(P )(v1) · · · sλk(P )(vk)eη(P )(z)

8.3. The See-Conjecture. There is an even stronger e-positivity which arises from setting
q = 1 + u and t = 1 + v.

Conjecture 9 (The See-Conjecture [BHIR23]). The coefficients Cλ0,λ1,...,λk(u, v) appearing
in the expansion

∇v1 · · · ∇vken(z)
∣∣∣∣ q=1+u
t=1+v

=
∑

λ0,λ1,...,λk`n
Cλ0,λ1,...,λk(u, v)eλ0(z)eλ1(v1) · · · eλk(vk)

are Schur positive symmetric functions in u and v.
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The name “See-Conjecture” describes the fact that we have a simultaneous Schur positivity
in u and v, and e-positivity in the variables z,v1, . . . ,vk. A seemingly stronger conjecture is
presented in Section 9.

8.4. Other special cases. Recall that (from Sections 1 and 2) we have

〈∇ven(z), sn−k,1k(v)〉 = ∆′eken(z). (8.5)

This means that the symmetric function side of the Delta Conjecture appears as a special case
in the expansion of ∇ven(z). By Proposition 3, a basic construction (see [HHL+05] or [Hag08,
Chapter 6, p. 99-101]) well-known to researchers in this area shows that the left-hand-side
of (8.5) equals the right-hand-side of the k = 1 case of (8.2), restricted to those P ∈ MD1n

whose reading word in the v variables is a proper shuffle of the increasing sequence of “big
cars” k + 1, k + 2, . . . , n and the decreasing sequence of “small cars” k, k − 1, . . . , 1. Given
such a P , assume rowi contains a big car b (in the v variables). The shuffle condition then
implies the v variable car in rowi+1 is less than b. The defining condition (8.1) now implies
that if c is the car in rowi in the z variables, the car in rowi+1 is greater than c. Hence each
of the rows containing big cars in the v variables corresponds to a moveable valley, as in
Figure 5.

11

28

43

32

54

67

15

36

−→
1

2

4

3

5

6

1

3

•

•

Figure 5. A multilabeled 18-Dyck path with Y -reading word 12834567 ∈
123456� 87 and the corresponding valley-decorated labeled Dyck path. The
rows above the big cars 8 and 7 contain a dot, indicating a moveable valley.

This all shows that finding and proving a t-statistic to combine with area to generate the
monomial expansion of ∇ven(z) could be viewed as containing the problem of proving the
Valley version of the Delta Conjecture.

19



9. Theta operators

We recall that for any symmetric function f(z), we let f ∗(z) = f [z/M ] with M =
(1− q)(1− t). The ∗-scalar product may be defined by setting

〈f(z), g(z)〉∗ = 〈f(z), ω(g)[Mz]〉,
where on the right-hand side we have a Hall-inner product. Modified Macdonald polynomials
are orthogonal under the ∗-scalar product and give

〈H̃µ(q, t; z), H̃µ(q, t; z)〉 = wµ,

where
wµ = wµ(q, t) =

∏
c∈µ

(qarm(c) − tleg(c)+1)(tleg(c) − qarm(c)+1).

One of the important specializations of the modified Macdonald basis is
H̃µ[q, t; 1− u] =

∏
(i,j)∈µ

1− uqitj.

Using super nabla operators, we see that on symmetric functions with no constant term,

Π = (1− u)−1∇1−u

∣∣∣∣
u=1

,

and Theta operators can be written as a specialization of the more general operator
Θ̃g(u) = ∇1−ug

∗∇−1
1−u from which Θg = Θ̃g(1).

We also see that by Macdonald-Koornwinder reciprocity,
∇M = M∆e1Π.

This operator appears quite naturally in the theory of modified Macdonald polynomials.
For instance, one has ∇Me

∗
n = en. For a given symmetric function F , we denote by Ξ the

operator (studied in [IR22]) which gives
ΞF (z) = ∇MF

∗(z).
Since

e∗λ =
∑
µ

H̃µ

wµ
〈H̃µ, e

∗
λ〉∗ =

∑
µ

H̃µ

wµ
〈H̃µ, hλ〉,

we find that
Ξeλ(z) = 〈∇ven, hλ(v)〉,

or equivalently
∇ven(z) =

∑
λ`n

mλ(v)Ξeλ(z).

At t = 1, we can use multilabeled Dyck paths to give both an elementary and monomial expan-
sion as follows: Let MD1

1n(λ) be the subset of MD1
1n where the labels form a rearrangement

of 1λ1 , 2λ2 , . . . , nλn . Then, as was found in [IR22],

Ξeλ(z)
∣∣∣∣
t=1

=
∑

P∈MD1
1n (λ)

qarea(P )eη(P )(z).
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On the other hand, DAdderio, Iraci, LeBorgne, Romero, and Vanden Wyngaerd give a
conjectural expansion of this symmetric function in terms of tiered trees [DIL+22]. We now
describe this conjecture.

9.1. Rooted tiered trees and Theta operators. A graph G is be a pair (V,E), with V
a finite set of vertices and E ⊆

(
V
2

)
a set of edges (hence no loops nor multiple edges). A

rooted graph is a graph (V,E) with a distinguished vertex r ∈ V which we call its root. A
tree is a connected graph with no circuits. Tiered trees were first defined in [DGGS19], and
then in [DIL+22], where the definition was extended to trees with repeated labels, requiring
an extra condition.

A rooted tiered tree is a tree T = (V,E) consisting of vertices V and edges E with a level
function lv : V → N and a labeling w : V → N+ such that the following hold:

(a) If {i, j} ∈ E, then lv(i) 6= lv(j).
(b) If {i, j} ∈ E and lv(i) < lv(j), then w(i) < w(j).
(c) If p(i) = p(j) and lv(i) = lv(j), then w(i) 6= w(j). Here p(i) denotes the parent of i,

which is the unique neighbor of i closest to the root.
(d) The root r is the only vertex at level 0 (lv−1(0) = {r}).

A rooted α-tree is one in which the number of vertices at level i is given by αi. The collection
of all rooted, tiered α-trees will be denoted by RTT(α); and the collection of all rooted, tiered
α-trees where the root is the unique vertex labeled with 0 will be denoted by RTT0(α).

Recall that j is a descendant of i if there is a k > 0 for which pk(j) = i. We will say
that two vertices i and j are compatible if lv(i) < lv(j) and w(i) < w(j), or if the reverse
inequalities hold. This means that between i and j, both levels and labels increase, or they
both decrease.

Definition 2. An inversion of T is a pair (i, j) of non-root vertices for which the following
hold:

(1) j is a descendant of i,
(2) j is compatible with p(i), and
(3) either w(j) < w(i) or w(j) = w(i) ∧ lv(j) > lv(i).

The monomial weight of a labeled tiered tree T with vertices 1, 2, . . . , n is given by
zT = zw(1) · · · zw(n) (with z0 = 1).

Conjecture 10 (The Theta Trees Conjecture [DIL+22]). For any composition α,

Θeαe1(z)
∣∣∣∣
t=1

=
∑

T∈RTT(α)
qinv(T )zT .

Also, one has

Ξeα(z)
∣∣∣∣
t=1

=
∑

RTT0(α)
qinv(T )zT .
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Figure 6. An element of RTT0(4, 2, 2) with 6 inversions.

One special case suggests a deeper connection between these symmetric functions and
certain representations of quivers. It was shown that the identity in the conjecture holds for
Θen1

e1(z)
∣∣∣∣
t=1

[DIL+22]. In order to prove this, however, it was essential to view this symmetric
function as giving Kac polynomials for dandelion quivers: the coefficient of mµ is the number
of absolutely indecomoposable representations over Fq with dimension vector depending on µ.
There is then the question of whether general Theta operator expressions can be interpreted
in this way to give a relation between Theta operators and representations of quivers over
finite fields.

The following remains an open question:

Conjecture 11. For any α, we have∑
P∈MD1

1n (α)
qarea(P )eη(P )(z) =

∑
RTT0(α)

qinv(T )zT .

Alternatively, there is a statistic-preserving bijection
φ : RTT0(α)→ {π ∈ MD1n | the v labels give the monomial vα }

That is, φ is a function from 0-rooted tiered trees to two-labeled Dyck paths that sends the inv
of the tree to the area of the path, the labels of the tree to the z-labels of the path, and the
levels of the tree to the v-labels of the path.

Finding such a bijection would automatically prove Conjecture 10. One of the main
difficulties here lies in the fact that, even for n = 2, there is no map between these two sets
that sends (w(i), lv(i)) to (xi, yi) for each i ∈ V ; that is, we cannot simultaneously send the
label and the level of every vertex to the two labels assigned to the same step.

One of the motivations for studying the expansion of Πe∗λ is that ΘeλΠe∗µ = Πe∗λe∗µ. This
means that one can understand applications of Theta operators to any symmetric function
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by understanding the basis {Πe∗λ}λ. The symmetric function ∇Me
∗
λ = Ξeλ gives a slight

modification which produces positivities. In particular, analogous to the positivity observed
in subsection 8.3,

Conjecture 12 (General See-Conjecture [BHIR23]). For any partition µ ` n, there exists
stable coefficients Cµ

λ0,λ1,...,λk(u, v) which are Schur positive polynomials in u and v such that

∇v1 · · · ∇vkΞeµ(z)
∣∣∣∣ q=1+u
t=1+v

=
∑

λ0,λ1,...,λk`n
Cµ
λ0,λ1,...,λk(u, v)eλ0(z)eλ1(v1) · · · eλk(vk).

9.2. On the modified Schur function s∗λ. Since for any partition λ,

s∗λ′(z) =
∑
µ

H̃µ(z)
wµ

〈H̃µ, s
∗
λ′〉∗ =

∑
µ

H̃µ(z)
wµ

〈H̃µ, sλ〉,

we have
Ξsλ′(z) = 〈∇ven(z), sλ(v)〉.

From Equation 8.4, we see that

Ξsλ′(z)
∣∣∣∣
t=1

=
∑

P∈LMD1n
λ1(P )=λ

qarea(P )eη(P )(z).

As an example, Figure 7 has a Dyck path with labels given by a lattice word. The lattice
word gives the partition λ = (3, 2, 1, 1), and thus appears as one of the objects enumerated
by Ξs(4,2,1)(z)

∣∣∣∣
t=1
.

1

2

1

1

3

4

2

Figure 7. An element of P ∈ LMD16 with associated lattice word w =
1211342 and partition λ1(P ) = (3, 2, 1, 1). The composition associated to this
path is η(P ) = (3, 2, 1, 1).

Here, we have another example of a symmetric function which exhibits the e-positivity
phenomenon under the substitution q = 1 + u.
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Conjecture 13 ([IR22]). The symmetric functions Ξsλ′(z) (and therefore Ξeλ(z)) exhibit
the e-positivity phenomenon. This would imply the existence of a statistic d for which we have

Ξsλ′(z)
∣∣∣∣
q=1+u

=
∑

P∈LMD1
1n

λ1(P )=λ

∑
S⊆Area(P )

u|S|td(P,S)eη(P )(z).
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