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Combinatorial aspects of Macdonald

and related polynomials
Jim Haglund

10.1 Introduction

The theory of symmetric functions plays an increasingly important role in modern math-
ematics, with substantial applications to representation theory, algebraic geometry, special
functions, mathematical physics, knot invariants, algebraic combinatorics, statistics, and other
areas. We give several references to these applications in the following sections. Macdonald
[123] introduced in 1988 a family of symmetric functions with two extra parameters q, t, the
Macdonald polynomials, and he described them in great detail in [124, Ch. VI]. This fam-
ily contains most of the previously studied families of symmetric functions, such as Schur
functions, Hall–Littlewood polynomials, and Jack polynomials, as limiting or special cases.

Macdonald polynomials can be studied from multiple points of view. Haiman [74] used
properties of the Hilbert scheme from algebraic geometry to prove the famous n! Conjecture
of Garsia and Haiman [42], which says that Macdonald polynomials represent bigraded char-
acters of certain modules of the symmetric group. This implies a Schur-positivity conjecture
made by Macdonald in [124, (VI.8.18?)].

Macdonald [126] (manuscript from 1987, published in 2000) also gave a construction of
orthogonal polynomials associated with any finite root system. These polynomials are sym-
metric in the sense of being Weyl group invariant, and they depend, apart from q, on as many
parameters as there are Weyl group orbits. The case of root system An−1 in [126], when ex-
tended to the GLn root system, yields the Macdonald polynomals introduced in [123].

In 1995 Macdonald [125] (later in much more detail in [127]) showed that, associated to any
affine root system, one can obtain families of nonsymmetric (i.e., not Weyl group invariant)
polynomials which yield by symmetrization the polynomials discussed in [126]. For the case
of root system A one is thus led to systems of nonsymmetric polynomials which are bases for
the polynomial ring, and to systems of symmetric polynomials [123] which are bases for the
ring of symmetric functions. Further improvements in this direction were made by Cherednik
[26]. In earlier work Koornwinder [92] had extended the construction of [126] for the case
of root system BC, thus obtaining a very general family of polynomials which contains the
Askey–Wilson polynomials, and hence all classical orthogonal polynomials, as special or limit
cases. Sahi [144] treated the corresponding nonsymmetric case. See Chapter 9 of this volume
for a comprehensive introduction to all these families.

This is a preliminary version of Chapter 10 in the book Encyclopedia of special functions: The Askey–Bateman project, Vol. 2: Multi-
variable special functions, T. H. Koornwinder and J. V. Stokman (eds.), Cambridge University Press, 2021.

Much of this chapter is a condensed version of Chapters 1, 2, 6, 7, and Appendix A of the author’s book The q, t-Catalan Num-
bers and the Space of Diagonal Harmonics: With an Appendix on the Combinatorics of Macdonald Polynomials, c©2008 American
Mathematical Society (AMS) and is reused here with the kind permission of the AMS.
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In the setup of Chapter 9, the polynomials introduced by Macdonald in 1988 correspond
to a GLn root system. This chapter focuses on the combinatorics of this case, and also of an
associated object, the space of diagonal harmonics DHn. This space, which has become in-
creasingly important in algebra and representation theory, has a beautiful and remarkably rich
combinatorial structure containing two-parameter extensions of Catalan numbers, Schröder
numbers, parking functions, and other popular combinatorial objects. Macdonald has com-
mented that the study of root systems and Lie algebras provides an inexhaustible source of
wonderful combinatorics. It seems something similar holds for the study of the Hilbert scheme
and DHn.

Section 10.2 contains some background material from the theory of symmetric functions.
Section 10.3 contains an overview of the basic analytic and algebraic properties of Macdonald
polynomials discovered by Macdonald, Garsia, and Haiman. Section 10.4 covers the combi-
natorics of the space of diagonal harmonics DHn, and its connection to Macdonald polynomial
theory. In §10.5 we discuss the combinatorial formula of Haglund, Haiman, and Loehr giving
the expansion of the Macdonald polynomial into monomials. In §10.6 we discuss some of the
many consequences of this formula. A corresponding combinatorial formula for the expan-
sion of the GLn nonsymmetric Macdonald polynomial into monomials is the subject of §10.7.
In §10.8 we discuss how results on the combinatorics of DHn from §10.4 led to the monomial
formula for Macdonald polynomials in §10.5, and §10.9 contains a brief overview of other re-
cent approaches to Macdonald polynomials. Section 10.10 overviews some important recent
developments, some of which haven’t yet been published.

10.2 Basic theory of symmetric functions

This section contains only a brief overview of symmetric function theory; for a more de-
tailed treatment of the subject we refer the reader to [124, Ch. 1] and [149, Ch. 7]. Given
f (x1, . . . , xn) ∈ K[x1, x2, . . . , xn] for some field K of characteristic 0, and σ ∈ Sn, let σ f :=
f (xσ1 , . . . , xσn ). We say f is a symmetric polynomial if σ f = f , for every σ in the symmetric
group Sn. It will be convenient to work with more general functions f depending on count-
ably many indeterminates x1, x2, . . ., indicated by f (x1, x2, . . .), in which case we view f as
a formal power series in the xi, and say it is a symmetric function if it is invariant under any
permutation of the variables. We let Xn and X stand for the set of variables {x1, . . . , xn} and
{x1, x2, . . .}, respectively.

A partition λ is a nonincreasing finite sequence λ1 ≥ λ2 ≥ . . . of positive integers. λi is
called the ith part of λ. We let `(λ) denote the number of parts, |λ| =

∑
i λi the sum of the

parts, and we say that λ is a partition of |λ|. For various formulas it will be convenient to
assume λ j = 0 for j > `(λ). The Ferrers graph (or diagram) of λ is an array of unit squares,
called cells, with λi cells in the ith row, with the first cell in each row left-justified, and with
the first row at the bottom. We often use λ to refer to its Ferrers graph. We define the conjugate
partition, λ′ as the partition whose Ferrers graph is obtained from λ by reflecting across the
diagonal x = y. See Figure 10.1. By convention (i, j) ∈ λ refers to a cell with (column, row)



Ch. 10, Combinatorial aspects 3

coordinates (i, j), with the lower left-hand cell of λ having coordinates (1, 1). The notation
x ∈ λ means x is a cell in λ. For technical reasons we say that 0 has one partition, the empty
set ∅, with `(∅) = 0 = |∅|.

Figure 10.1 On the left, the Ferrers graph of the partition (4, 3, 2, 2), and on the right, that of its conjugate
(4, 3, 2, 2)′ = (4, 4, 2, 1).

We let Λn denote the vector space consisting of symmetric functions in x1, x2, . . . that are
homogeneous of degree n. The ring of symmetric functions Λ is the direct sum of the Λn. The
most basic symmetric functions are the monomial symmetric functions, which depend on a
partition λ in addition to a set of variables. They are denoted by mλ(X) = mλ(x1, x2, . . .). In
a symmetric function it is typical to leave off explicit mention of the variables, with a set of
variables being understood from context, so mλ = mλ(X). We illustrate these first by means
of examples. We let Par(n) denote the set of partitions of n, and use the notation λ ` n as an
abbreviation for λ ∈ Par(n). For example,

m1,1 =
∑
i< j

xix j, m2,1,1(X3) = x2
1x2x3 + x1x2

2x3 + x1x2x2
3, m2(X) =

∑
i

x2
i .

In general, mλ(X) is the sum of all distinct monomials in the xi whose multiset of exponents
equals the multiset of parts of λ. Any element of Λ can be expressed uniquely as a linear
combination of the mλ.

We let 1n stand for the partition consisting of n parts of size 1. The function m1n is called the
nth elementary symmetric function, which we denote by en. Then

∏∞
i=1(1 + zxi) =

∑∞
n=0 znen,

e0 = 1. Another important special case is mn =
∑

i xn
i , known as the power-sum symmetric

functions, denoted by pn. We also define the complete homogeneous symmetric functions hn,
by hn :=

∑
λ`n mλ, or equivalently

∏∞
i=1(1 − zxi)−1 =

∑∞
n=0 znhn. For λ ` n, we define eλ :=∏

i eλi , pλ :=
∏

i pλi , and hλ :=
∏

i hλi . For example,

e2,1 =
∑
i< j

xix j

∑
k

xk = m2,1 + 3m1,1,1, p2,1 =
∑

i

x2
i

∑
j

x j = m3 + m2,1,

h2,1 =
(∑

i

x2
i +

∑
i< j

xix j

)∑
k

xk = m3 + 2m2,1 + 3m1,1,1.

It is known that {eλ}λ`n forms a basis for Λn, and so do {pλ}λ`n and {hλ}λ`n.
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Definition 10.2.1 Two simple functions on partitions that will often be used, are

n(λ) :=
∑

i

(i − 1)λi =
∑

i

(
λ′i
2

)
, zλ :=

∏
i

ini ni! ,

where ni = ni(λ) is the number of parts of λ equal to i.

We let ω denote the ring endomorphism ω : Λ→ Λ defined by ω(pk) := (−1)k−1 pk. Thus ω
is an involution with ω(pλ) = (−1)|λ|−`(λ) pλ. Also, ω(en) = hn, and more generally ω(eλ) = hλ.

Remark 10.2.2 Identities like h2,1 = m3 + 2m2,1 + 3m1,1,1 appear at first to depend on a set
of variables, but it is customary to view them as polynomial identities in the pλ. Since the pk

are algebraically independent, we can specialize them to whatever we please, forgetting about
the original set of variables X.

We define the Hall scalar product, a bilinear form Λ × Λ→ Q, by

〈pλ, pβ〉 := zλ χ(λ = β), (10.2.1)

where, for any logical statement L, χ(L) :=

1 if L is true,

0 if L is false.

Clearly, 〈 f , g〉 = 〈g, f 〉. Also, 〈ω f , ωg〉 = 〈 f , g〉, which follows from the definition if f = pλ,
g = pβ, and by bilinearity for general f , g, since the pλ form a basis for Λ.

Theorem 10.2.3 (See [124, §I.4] or [149, Ch. 7])
The hλ and the mβ are dual with respect to the Hall scalar product, i.e.,

〈hλ,mβ〉 = χ(λ = β). (10.2.2)

For any f ∈ Λ, and any basis {bλ}λ∈Par of Λ, let f |bµ denote the coefficient of bµ when f is
expressed in terms of the {bλ}. Then (10.2.2) implies:

Corollary 10.2.4 〈 f , hλ〉 = f |mλ
.

10.2.1 Tableaux and Schur functions

Given λ, µ ∈ Par(n), a semi-standard Young tableau (or SSYT) of shape λ and weight µ is
a filling of the cells of the Ferrers graph of λ with the elements of the multiset {1µ1 2µ2 · · · }

such that the numbers weakly increase across rows and strictly increase up columns. Let
SSYT(λ, µ) denote the set of these fillings, and Kλ,µ the cardinality of this set. The Kλ,µ are
known as the Kostka numbers. Our definition also makes sense if our weight is a compo-
sition of n, i.e.. any finite sequence of nonnegative integers whose sum is n. For example,
K(3,2),(2,2,1) = K(3,2),(2,1,2) = K(3,2),(1,2,2) = 2 as in Figure 10.2.

If the Ferrers graph of a partition β is contained in the Ferrers graph of λ, denoted β ⊆ λ,
let λ/β refer to the subset of cells of λ which are not in β. This is referred to as a skew shape.
Define a SSYT of shape λ/β and weight ν, where |ν| = |λ| − |β|, to be a filling of the cells
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Figure 10.2 Some SSYT of shape (3, 2).

of λ/β with elements of {1ν1 2ν2 · · · }, again with weak increase across rows and strict increase
up columns. We let SSYT(λ, µ) denote the set of such tableaux, and its cardinality by Kλ/β,ν.

Let wcomp(µ) denote the set of all compositions whose multiset of nonzero parts equals
the multiset of parts of µ. It follows easily from Figure 10.2 that K(3,2),α = 2 for all α ∈
wcomp(2, 2, 1). Hence

∑
α,T

∏
i xαi

i = 2m(2,2,1), where the sum is over all tableaux T of shape
(3, 2) and weight being some element α of wcomp(2, 2, 1).

This is a special case of a more general phenomenon. Define sλ :=
∑
α,T

∏
i xαi

i (λ ∈ Par(n)),
where the sum is over all compositions α of n, and all possible tableaux T of shape λ and
weight α. Then

sλ =
∑
µ`n

Kλ,µmµ. (10.2.3)

The sλ, called Schur functions, are in Λ and are fundamental to the theory of symmetric
functions. Two special cases of (10.2.3) are sn = hn (since Kn,µ = 1 for all µ ∈ Par(n)) and
s1n = en (since K1n,µ = χ(µ = 1n)).

A SSYT of weight 1n is called standard, or a SYT. The set of SYT of shape λ is denoted
SYT(λ). Below we list some of the important properties of Schur functions.

Theorem 10.2.5 Let λ, µ ∈ Par. Then
1. The Schur functions are orthonormal with respect to the Hall scalar product, i.e.,
〈sλ, sµ〉 = χ(λ = µ). Thus, for any f ∈ Λ, 〈 f , sλ〉 = f |sλ .

2. Action by ω: ω(sλ) = sλ′ .

3. (Jacobi–Trudi identity) sλ = det(hλi−i+ j)
`(λ)
i, j=1, where h0 = 1 and hk = 0 for k < 0.

4. (Pieri rule) Let k ∈ N. Then

sλhk =
∑
γ sγ, (10.2.4)

where the sum is over all γ whose Ferrers graph contains λ with |γ/λ| = k and such that
γ/λ is a horizontal strip, i.e., has no two cells in the same column.

Note that by applying ω to both sides of (10.2.4) we can get a corresponding expression for
sλek. For example, s2,1h2 = s4,1 + s3,2 + s3,1,1 + s2,2,1, s2,1e2 = s2,1,1,1 + s2,2,1 + s3,1,1 + s3,2.

10.2.2 Statistics on tableaux

There is a q-analogue of the Kostka numbers, denoted by Kλ,µ(q) and also called Schur coef-
ficient, which has many applications. They can be defined as the coefficients that arise when
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expanding Schur functions sλ(X) in terms of Hall–Littlewood polynomials Pµ(X; q) [124,
(III.2.6), §III.6]:

sλ(X) =
∑
µ

Kλ,µ(q) Pµ(X; q). (10.2.5)

The Kλ,µ(q) are polynomials in q which satisfy Kλ,µ(1) = Kλ,µ. Foulkes [36] conjectured that
Kλ,µ ∈ N[q]. This conjecture was resolved by Lascoux & Schützenberger [106], who found
a statistic cocharge to generate these polynomials by (10.2.6). Butler [23, §2.5] provided a
detailed account of their proof, filling in a lot of missing details. A short proof, based on the
new combinatorial formula for Macdonald polynomials, is contained in §10.6.

Let T ∈ SSYT(λ, µ), and let charge(T ) := n(µ) − cocharge(T ) with cocharge(T ) to be
defined below. The reading word read(T ) of T is obtained by reading the entries in T from
left to right in the top row of T , then continuing left to right in the second row from the top of
T , etc. For example, the tableau in the upper-left of Figure 10.2 has reading word 22113. To
calculate cocharge(T ), perform the following algorithm on read(T ).

Cocharge algorithm
1. Start at the end of read(T ) and scan left until you encounter a 1 – say this occurs at spot

i1, so read(T )i1 = 1. Then start there and scan left until you encounter a 2. If you hit the
end of read(T ) before finding a 2, loop around and continue searching left, starting at the
end of read(T ). Say the first 2 you find equals read(T )i2 . Now iterate, start at i2 and search
left until you find a 3, etc. Continue in this way until you have found 4, 5, . . . , µ′1, with µ′1
occurring at spot iµ′1 . Then the first subword of read(T ) is defined to be the elements of the
set {read(T )i1 , . . . , read(T )iµ′1

}, listed in the order in which they occur in read(T ) if we start at
the beginning of read(T ) and move left to right. For example, if read(T ) = 21613244153 is
a word of content µ = (3, 2, 2, 2, 1, 1), then the first subword equals 632415, corresponding
to places 3, 5, 6, 8, 9, 10 of read(T ).

Next remove the elements of the first subword from read(T ) and find the first subword of
what’s left. Call this the second subword of read(T ). Remove this and find the first subword
in what’s left and call this the third subword of read(T ), etc. For the word 21613244153,
the subwords are 632415, 2143, 1.

2. The value of cocharge(T ) will be the sum of the values of cocharge on each of the subwords
of read(T ). Thus it suffices to assume read(T ) ∈ Sm for some m, in which case we set

cocharge(read(T )) = comaj(read(T )−1),

where read(T )−1 is the usual inverse in Sm. Here comaj(σ) is equal to the sum of m− i over
those i in the descent set Des(σ), i.e., over those i for which σi > σi+1.
For example, if σ = 632415, then σ−1 = 532461, cocharge(σ) = 5 + 4 + 1 = 10, and so
cocharge(21613244153) = 10 + 4 + 0 = 14.

Note that to compute charge, we could create subwords in the same manner, and count m− i
for each i with i + 1 occurring to the right of i instead of to the left. We can now formulate the
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result of Lascoux & Schützenberger [106] as

K̃λ,µ(q) := qn(µ)Kλ,µ(1/q) =
∑

T∈SSYT(λ,µ)

qcocharge(T ). (10.2.6)

The polynomials K̃λ,µ(q) have various interpretations in terms of representation theory and
geometry [45, 80, 122].

In addition to the cocharge statistic, there is a major index statistic on SYT which is often
useful. Given a SYT tableau T of shape λ , define a descent of T to be a value of i, 1 ≤ i < |λ|,
for which i + 1 occurs in a row above i in T . Let maj(T ) :=

∑
i and comaj(T ) :=

∑
(|λ| − i),

where the sums are over the descents of T . Then [149, p.363]

sλ(1, q, q2, . . .) =
1

(q; q)n

∑
T∈SYT(λ)

qmaj(T ) =
1

(q; q)n

∑
T∈SYT(λ)

qcomaj(T ),

where (w; q)n = (1 − w)(1 − wq) · · · (1 − wqn−1) is the usual q-shifted factorial.

10.2.3 Plethystic notation

Many of the theorems later in this chapter involving symmetric functions will be expressed
in plethystic notation. In this subsection we define this and give several examples in order to
acclimate the reader. For more detailed treatments of plethysm see [47], [48], [124, Ch. I, §8].

Let E(t1, t2, t3 . . .) be a formal series of rational functions in the parameters t1, t2, . . . . We
define the plethystic substitution of E into pk, denoted pk[E], by pk[E] := E(tk

1, t
k
2, . . .). Note

the square plethystic brackets around E – this is to distinguish pk[E] from the ordinary kth
power sum in a set of variables E, which we have already defined as pk(E). One thing we
need to emphasize is that any minus signs occurring in the definition of E are left as is when
replacing the ti by tk

i .

Example 10.2.6
1. Inside plethystic brackets, we view a set of variables X as p1(X) = x1 + x2 + . . . . For

example, pk[X] = pk(X).
2. For z an indeterminate, pk[zX] = zk pk[X].
3. pk[X − Y] =

∑
i(xk

i − yk
i ) = pk[X] − pk[Y].

4. pk

[
X(1 − z)

1 − q

]
=

∑
i

xk
i (1 − zk)
1 − qk .

5.
∏

i

(1 − txiz)
(1 − xi)z

=

∞∑
n=0

znhn[X(1 − t)],

which can be proved by taking exp ln of the left-hand-side, and expressing everything in
terms of the pk.

Let Z = (−x1,−x2, . . .). Note that pk(Z) =
∑

i(−1)k xk
i , which is different from pk[−X]. We

need a special notation for the case where we wish to replace variables by their negatives
inside plethystic brackets. We use the ε symbol to denote this, i.e., pk[εX] :=

∑
i(−1)k xk

i .
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We now extend this definition of plethystic substitution of E into f for an arbitrary f ∈ Λ

by first expressing f as a polynomial in the pk, say f =
∑
λ cλpλ for constants cλ, then defining

f [E] as f [E] =
∑
λ cλ

∏
i pλi [E]. We mention that for any f ∈ Λ, ω( f (X)) = f [−εX].

Some particularly useful plethystic identities are the following addition formulas. They can
be proved by first expressing them in terms of the pλ (see [58, Ch. 1]). The same identities
hold if we replace hk by ek throughout.

Theorem 10.2.7 Let E = E(t1, t2, . . .) and F = F(w1,w2, . . .) be two formal series of
rational terms in their indeterminates. Then

hn[E + F] =

n∑
k=0

hk[E]hn−k[F], hn[E − F] =

n∑
k=0

hk[E]hn−k[−F].

10.2.4 The fundamental basis for the ring of quasisymmetric functions

A multivariate polynomial f (X) is called quasisymmetric if the coefficient of xa1
i1
· · · xak

ik
in f is

equal to the coefficient of xa1
j1
· · · xak

jk
in f whenever 1 ≤ i1 < i2 < · · · < ik and 1 ≤ j1 < j2 <

· · · < jk, for all a1, a2, . . . , ak ∈ N. For a subset S of {1, 2, . . . , n − 1}, let

Fn,S (X) :=
∑

1≤a1≤a2≤···≤an
ai=ai+1 =⇒ i<S

xa1 xa2 · · · xan

denote Gessel’s fundamental quasisymmetric function. The Fn,S form an important basis for
the ring of quasisymmetric functions.

Remark 10.2.8 There is another way to view Fn,S (X) which will prove useful later. For any
word b1b2 · · · bn of positive integers, let the standardization ζ(b1b2 · · · bn) denote the permu-
tation in Sn which satisfies ζi < ζ j if and only if bi ≤ b j, for all 1 ≤ i < j ≤ n. For example,
ζ(23253) = 13254. Then for any σ ∈ Sn, Fn,Des(σ−1)(X) is simply the sum of xb1 xb2 · · · xbn over
all words b1b2 · · · bn of positive integers whose standardization ζ(b1b2 · · · bn) equals σ.

10.2.5 Graded Hilbert series and characters

Here we assumes some basic facts about the representation theory of finite groups which will
be familiar to many readers. Good sources for background information on these topics are [84]
and [141]. Let G be a finite group, and V a finite dimensional complex vector space, with basis
w1,w2, . . . ,wn. Any linear action of G on V makes V into a complex G-module. A module is
called irreducible if it has no submodules other than {0} and itself. Every finite dimensional
complex G-module V can be expressed as a direct sum of irreducible submodules.

The character of the module (under the given action), which we denote by char(V), is
a function on G depending only on the conjugacy class of its argument. The character is
called irreducible if V is irreducible. The irreducible characters form a basis of the space
of conjugation invariant functions on G, so the number of conjugacy classes is equal to
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the number of irreducible characters. If V =
⊕d

j=1 V j, where each V j is irreducible, then
char(V) =

∑d
j=1 char(V j).

For the symmetric group Sn the conjugacy class of an element σ is determined by rearrang-
ing the lengths of the disjoint cycles of σ into nonincreasing order to form a partition, called
the cycle type β of σ (see [141]). The possible cycle types are precisely the partitions of n. The
number of elements in the conjugacy class determined by β is equal to n!/zβ. For a character
χ and an element σ with cycle type β we can write χ(β) instead of χ(σ). Moreover there is a
canonical bijection λ 7→ χλ of Par(n) onto the set of irreducible characters. This bijection can
for instance be given by the equivalent identities in Theorem 10.2.9 below.

The dimension of the irreducible Sn-module with character χλ is known to be f λ, the num-
ber of SYT of shape λ. For example, in dimension 1 we have two characters, χ(n) (called
the trivial character since χ(n)(µ) = 1 for all µ ` n) and χ1n

(called the sign character since
χ1n

(µ) = (−1)n−`(µ) which is the sign of any permutation of cycle type µ). One reason Schur
functions are important in the representation theory of Sn is the following.

Theorem 10.2.9 In the expansion of the pµ into the sλ basis, the coefficients are the χλ:

pµ =
∑
λ`n

χλ(µ)sλ, sλ =
∑
µ`n

z−1
µ χ

λ(µ)pµ.

Let V be a graded subspace of C[x1, . . . , xn] with respect to the grading of C[x1, . . . , xn]
by degree of homogeneity. Then V =

⊕∞

i=0 V (i), where V (i) is the finite dimensional sub-
space consisting of all elements of V that are homogeneous of degree i in the x j. We define
the Hilbert series Hilb(V; q) of V to be the sum Hilb(V; q) =

∑∞
i=0 qi dim(V (i)), where dim

indicates the dimension as a complex vector space.
Given f (x1, . . . , xn) ∈ C[Xn] and σ ∈ Sn, set σ f := f (xσ1 , . . . , xσn ). This defines an action

of Sn on C[Xn]. Assume that V is as above, is fixed by the Sn-action, which also respects the
grading. We define the Frobenius series Frob(V; X, q) of V to be the symmetric function

Frob(V; X, q) :=
∞∑

i=0

qi
∑

λ∈Par(i)

Mult (χλ,V (i)) sλ(X), (10.2.7)

where Mult (χλ,V (i)) is the multiplicity of the irreducible character χλ in the character of
V (i) under the action. In other words, if we decompose V (i) into irreducible Sn-submodules,
Mult (χλ,V (i)) is the number of these submodules whose trace equals χλ. We will typically
refer to the Frobenius series by the simpler notation Frob(V; q), leaving out the reference to
the implicit set of variables on both sides of (10.2.7).

A polynomial in C[Xn] is alternating, or an alternate, if σ f = (−1)inv(σ) f (σ ∈ Sn), where
inv(σ) is the number of inversions of σ, i.e., the number of pairs (i, j) with 1 ≤ i < j ≤ n and
σi > σ j. The set of alternates in V forms a subspace denoted by Vε .

Remark 10.2.10 Since the dimension of the representation corresponding to χλ equals f λ,
which also equals the coefficient of m1n in sλ, we successively have by Corollary 10.2.4 and
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by an easy exercise that

〈Frob(V; q), h1n〉 = Hilb(V; q), 〈Frob(V; q), s1n〉 = Hilb(Vε ; q).

Example 10.2.11 Since dim(C[Xn](i)) =
(

n+i−1
i

)
, we have Hilb(C[Xn]; q) = (1 − q)−n. It is

known (take into account the Sn-action and see [11, §8.5]) that

Frob(C[Xn]; q) =
∑

λ∈Par(n)

sλ

∑
T∈S YT (λ) qmaj(T )

(q; q)n
. (10.2.8)

10.2.6 The ring of co-invariants

The set of symmetric polynomials in x1, . . . , xn, denoted C[Xn]Sn , which is generated by
1, e1, . . . en, is called the ring of invariants. Although we will focus on the type A case, we refer
the reader to the excellent book [81] by Humphreys for general information on how many of
these results apply to more general reflection groups. The quotient ring Rn := C[x1, . . . , xn]/
〈e1, e2, . . . , en〉, or equivalently C[x1, . . . , xn]/〈p1, p2, . . . , pn〉, obtained by moding out by the
ideal generated by all symmetric polynomials of positive degree, is called the ring of co-
invariants. It is known that dim(Rn) = n! as a C-vector space, and moreover that Hilb(Rn; q) =

[n]!, where [n]! := (q; q)n/(1−q)n = (1+q)(1+q+q2) · · · (1+q+· · ·+qn−1). E. Artin [7] derived
a specific basis for Rn, namely cosets of the elements in the set

{∏
1≤i≤n xαi

i | 0 ≤ αi ≤ i − 1
}
.

Also, [148, 150],

Frob(Rn; q) =
∑

λ∈Par(n)

sλ
∑

T∈S YT (λ)

qmaj(T ). (10.2.9)

Let ∆ := det
(
x j−1

i
)n
i, j=1 =

∏
1≤i< j≤n(x j − xi) be the Vandermonde determinant. The space of

harmonics Hn can be defined as the C-vector space spanned by ∆ and its partial derivatives of
all orders. Haiman [72] provides a detailed proof that Hn is isomorphic to Rn as an Sn-module,
and notes that an explicit isomorphism α is obtained by letting α(h), h ∈ Hn, be the element of
Rn represented modulo 〈e1, . . . , en〉 by h. Thus dim(Hn) = n! , and moreover the character of
Hn under the Sn-action is given by (10.2.9). He also argues that (10.2.9) follows immediately
from (10.2.8) and the fact that Hn generates C[Xn] as a free module over C[Xn]Sn .

10.3 Analytic and algebraic properties of Macdonald polynomials

10.3.1 Macdonald’s original construction

During the 1980s a number of extensions of Selberg’s integral were found (see Chapter 11 in
this volume and also [35] for background on Selberg’s integral). Askey [8] conjectured a q-
analogue of the integral, which he proved for n = 2 and which was later proved independently
by Kadell and Habsieger for general n. Other generalizations involved the insertion of sym-
metric functions in the xi into the integrand (see for example [152]). One of these extensions,
due to Kadell [85], involved the insertion of symmetric functions depending on a partition, a
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set of variables Xn, and another parameter. They are now known as Jack symmetric functions
since they were first studied by H. Jack [83].

In his article Kadell gave evidence that a q-analogue of the Jack symmetric functions ex-
isted which featured in a q-analogue of his extension of Selberg’s integral. Shortly after he
proved these polynomials existed for n = 2 [86]. The case for general n was solved by Mac-
donald [123], and these q-analogues of Jack symmetric functions are now called Macdonald
polynomials, denoted Pλ(X; q, t). A brief discussion of their connection to Kadell’s work can
also be found in [124, §VI.10, p.387]. The Pλ(X; q, t) are symmetric functions with coeffi-
cients in Q(q, t). If we let q = tα, divide by (1 − t)|λ| and let t → 1− in the Pλ we get the Jack
symmetric functions with parameter α. Many other important bases of the ring of symmet-
ric functions are also limiting or special cases of the Pλ(X; q, t), and their introduction was
a major breakthrough in algebraic combinatorics and special functions. In particular, for any
q we have Pλ(X; q, q) = sλ(X) and Pλ(X; q, 1) = mλ(X), we have Pλ(X; 0, t) = Pλ(X; t) (the
Hall–Littlewood polynomial), and we have Pλ(X; 1, t) =

∏
i eλ′i . Macdonald polynomials have

found applications to many areas including algebraic geometry, mathematical physics, and
representation theory [24, 51, 53, 60, 74, 75, 76, 77].

Here is Macdonald’s construction of the Pλ(X; q, t). The best reference for their basic prop-
erties is [124, §VI.4]. The definition involves the following standard partial order on partitions
λ, µ ∈ Par(n), called dominance order: λ ≥ µ ⇐⇒

∑i
j=1 λ j ≥

∑i
j=1 µ j for i ≥ 1.

Theorem 10.3.1 (Macdonald polynomials)
Define a (q, t)-extension of the Hall scalar product (10.2.1) by

〈pλ, pµ〉q,t := χ(λ = µ) zλ
`(λ)∏
i=1

1 − qλi

1 − tλi
. (10.3.1)

Then the following conditions uniquely define a family {Pλ(X; q, t)}λ∈Par(n) of symmetric func-
tions with coefficients in Q(q, t):

(i) Pλ =
∑
µ≤λ

cλ,µmµ, where cλ,µ ∈ Q(q, t) and cλ,λ = 1; (10.3.2a)

(ii) 〈Pλ, Pµ〉q,t = 0 if λ , µ. (10.3.2b)

Remark 10.3.2 Since the (q, t)-extension of the Hall scalar product reduces to the ordinary
Hall scalar product when q = t, it is clear that Pλ(X; q, q) = sλ(X). We also note that, since the
dominance partial order is not a total order, it is not at all obvious that conditions (10.3.2a) and
(10.3.2b) define a unique set of polynomials. Indeed, as Macdonald explains in [124, §VI.4],
given any extension of the dominance partial order to a total order, we can apply Gram–
Schmidt orthogonalization to obtain a family of symmetric functions satisfying (10.3.2a) and
(10.3.2b). His theorem says that we get the same family no matter which extension to a total
order we use. Macdonald proves Theorem 10.3.1 by first constructing operators for which the
Pλ are simultaneous eigenfunctions with distinct eigenvalues.

Example 10.3.3 For µ ` n, Pµ(X; 0, t) is known as the Hall–Littlewood polynomial, denoted
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Pµ(X; t). Its integral form is defined as Qµ(X; t) :=
(∏

i (t)ni(λ)

)
Pµ(X; t). If we expand the

Qµ(X; t) in terms of the Schur basis, the coefficients will be polynomials in Z[t], but not
generally in N[t], i.e., they will not have positive coefficients. However, if we expand the
Qµ(X; t) in terms of the Sλ(X; t) occurring in [124, (III.4.6)], which are in their turn equal to
sλ[X(1 − t)] by use of Example 10.2.6(5.), then

Qµ(X; t) =
∑
λ

Kλ,µ(t) Sλ(X; t) =
∑
λ

Kλ,µ(t) sλ[X(1 − t)] (10.3.3)

with Kλ,µ(t) as in (10.2.5) and (10.2.6). Indeed, the first equality in (10.3.3) is equivalent to
(10.2.5) by the biorthogonalities [124, (III.4.9), (III.4.10)].

Given a cell x ∈ λ, let the arm a = a(x), leg l = l(x), coarm a′ = a′(x), and coleg l′ = l′(x)
(x-dependence usually suppressed) be the number of cells strictly between x and the border
of λ in the E, N, W and S directions, respectively, as in Figure 10.3. Also, define

Bµ = Bµ(q, t) :=
∑
x∈µ

qa′ tl′ , Πµ = Πµ(q, t) :=
′∏

x∈µ

(1 − qa′ tl′ ), (10.3.4)

where a prime symbol ′ above a product over cells of a partition µ indicates we ignore the
corner (1, 1) cell, and B∅ = 0, Π∅ = 1. For example, B(2,2,1) = 1 + q + t + qt + t2 and
Π(2,2,1) = (1−q)(1− t)(1−qt)(1− t2). Note that n(µ) =

∑
x∈µ l′ =

∑
x∈µ l (cf. Definition 10.2.1).

Figure 10.3 The arm a, coarm a′, leg l and coleg l′ of a cell.

Theorem 10.3.4 below gives some basic results of Macdonald on the Pλ. Its item 2. will
soon be particularly useful to us. Recall that for any symmetric function F, square brackets
as in F[Z] indicate plethystic substitution, and if {t1, t2, . . .} is a set of positive parameters,
F[t1 + t2 + . . .] = F(t1, t2, . . .).

Theorem 10.3.4 Let λ, µ ∈ Par.
1. Let z be an indeterminate. Then [124, (VI.6.17)]

Pλ

[
1 − z
1 − t

; q, t
]

=
∏
x∈λ

tl′ − qa′z
1 − qatl+1 . (10.3.5)
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2. (Koornwinder–Macdonald reciprocity)
Assume n ≥ max(`(λ), `(µ)). Then [124, (VI.6.6), (VI.6.11)]∏

x∈µ

1 − qatl+1

tl′ − qa′ tn

 Pµ

 n∑
i=1

tn−iqλi ; q, t

 (10.3.6)

is symmetric in µ, λ, where as usual we let µi = 0 for i > `(µ), λi = 0 for i > `(λ).
3. For any two sets of variables X,Y (see [47, §1]),

hn

[
XY

1 − t
1 − q

]
=

∑
λ`n

∏
x∈λ

1 − qatl+1

1 − qa+1tl

 Pλ(X; q, t) Pλ(Y; q, t), (10.3.7a)

en [XY] =
∑
λ`n

Pλ(X; q, t) Pλ′ (Y; t, q). (10.3.7b)

Identity(10.3.7a) follows from∏
i, j

(txiy j; q)∞
(xiy j; q)∞

=
∑
λ

∏
x∈λ

1 − qatl+1

1 − qa+1tl

 Pλ(X; q, t) Pλ(Y; q, t) (10.3.8)

(see [124, (VI.4.13), (VI.6.19)]) by taking the portion of both sides of (10.3.8) of homoge-
neous degree n in the X and Y variables.

Remark 10.3.5 Let λ ` n, and z an indeterminate. Say λ has a hook shape if λ2 ≤ 1. Then
sλ[1 − z] = 0 if λ is not a “hook”. In fact,

sλ[1 − z] =

(−z)r(1 − z) if λ = (n − r, 1r), 0 ≤ r ≤ n − 1,

0 otherwise.

This follows by setting q = t = 0 in (10.3.5), since Pλ(X; 0, 0) = sλ.

10.3.2 The q, t-Kostka polynomials

Macdonald found that the Pλ(X; q, t) have a very mysterious property. Let Jµ[X; q, t] denote
the so-called Macdonald integral form, defined as

Jµ(X; q, t) :=

∏
x∈µ

(
1 − qatl+1) Pµ(X; q, t). (10.3.9)

Now expand Jµ in terms of the sλ[X(1 − t)]:

Jµ(X; q, t) =
∑
λ`|µ|

Kλ,µ(q, t) sλ[X(1 − t)] (10.3.10)

for some Kλ,µ(q, t) ∈ Q(q, t). Macdonald [124, (VI.8.18?)] conjectured that Kλ,µ(q, t) ∈ N[q, t].
This became a famous problem in combinatorics known as Macdonald’s positivity conjecture.
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Part of the fascination for this conjecture is the case q = 0, since Jµ(X; 0, t) = Qµ(X; t), and
so by (10.3.10), (10.3.3) and (10.2.6) we have

Kλ,µ(0, t) =
∑

T∈SSYT(λ,µ)

tcharge(T ). (10.3.11)

No two-parameter generalization of charge that generates the Kλ,µ(q, t) has ever been found
though. Macdonald was also able to show that

Kλ,µ(1, 1) = Kλ,µ. (10.3.12)

The Kλ,µ(q, t) in (10.3.10) are known as the q, t-Kostka polynomials.
In the next section we describe a conjecture of Garsia and Haiman which gives a represen-

tation-theoretic interpretation for the positivity of the Kλ,µ(q, t). This conjecture was proved
by Haiman [74] in 2001. Thus Macdonald’s positivity conjecture was resolved after more than
ten years of intensive research.

Macdonald [124, §VI.8, p.356] posed a refinement of his positivity conjecture which is
still open. Due to (10.3.11) and (10.3.12), one could hope to find statistics qstat(T, µ) and
tstat(T, µ) given by some combinatorial rule such that

Kλ,µ(q, t) =
∑

T∈SYT(λ)

qqstat(T, µ)ttstat(T, µ). (10.3.13)

In Garsia and Haiman’s work it is more natural to deal with the polynomials

K̃λ,µ(q, t) := tn(µ)Kλ,µ(q, 1/t), so (by (10.2.6)) K̃λ,µ(0, t) =
∑

T∈SSYT(λ,µ)

qcocharge(T ).

Macdonald found a statistical description of the Kλ,µ(q, t) whenever λ = (n − k, 1k) is a hook
shape [124, §VI.8, Example 2], which can be stated as

K̃(n−k,1k),µ = ek[Bµ − 1]. (10.3.14)

For example, K̃(3,1,1),(2,2,1)(q, t) = e2[q + t + qt + t2] = qt + q2t + 2qt2 + t3 + qt3. He also
found a statistical description when q is set equal to 1 [124, §VI.8, Example 7], and a similar
description when t = 1. To describe it, say we are given a statistic stat(T ) on skew SYT,
a SYT T with n cells, and a composition α = (α1, . . . , αk) of n into k parts. Define the α-
sectionalization of T to be the set of k skew SYT obtained in the following way. The first
element of the set is the portion of T containing the numbers 1 through α1. The second element
is the portion of T containing the numbers α1 + 1 through α1 + α2, but with α1 subtracted
from each of these numbers, so we end up with a skew SYT of size α2. In general, the ith
element, denoted T (i), is the portion of T containing the numbers α1 + . . . + αi−1 + 1 through
α1 + . . . + αi, but with α1 + . . . + αi−1 subtracted from each of these numbers. Then we define
the α-sectionalization of stat(T ) to be the sum stat(T, α) :=

∑k
i=1 stat(T (i)).

In the above terminology, Macdonald’s formula for the q = 1 Kostka numbers can be
expressed as K̃λ,µ(1, t) =

∑
T∈SYT(λ) tcomaj(T, µ′). For example, given the tableau T in Figure 10.4

with λ = (4, 3, 2) and (coincidentally) µ also (4, 3, 2), then µ′ = (3, 3, 2, 1) and the values of
comaj(T, µ′) on T (1), . . . ,T (4) are 1, 2, 1, 0, respectively, so comaj(T, µ′) = 4.
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Figure 10.4 The (3, 3, 2, 1)-sections of a SYT.

A combinatorial description of the K̃λ,µ(q, t) when µ is a hook was found by Stembridge [153].
Given a composition α consisting of k parts, define rev(α) := (αk, αk−1, . . . , α1). Then, if
µ = (n − k, 1k), Stembridge’s result can be expressed as

K̃λ,µ(q, t) =
∑

T∈SYT(λ)

qmaj(T, µ)tcomaj(T, rev(µ′)). (10.3.15)

Macdonald [124, (VI.8.21), (VI.8.22)] obtained two symmetry relations, which (expressed
in terms of the K̃λ,µ) are

K̃λ,µ(q, t) = K̃λ,µ′ (t, q) (10.3.16a)

K̃λ′,µ(q, t) = tn(µ)qn(µ′)K̃λ,µ(1/q, 1/t). (10.3.16b)

Fischel [33] first obtained statistics for the case when µ has two columns. in view of
(10.3.16b) this also implies statistics for the case where µ has two rows. Later Lapointe &
Morse [98] and Zabrocki [157] independently found alternate descriptions of this case, but all
of these are rather complicated to state. A simpler description of the two-column case, based
on the combinatorial formula for Macdonald polynomials in §10.5, is contained in §10.6.

In 1996 several groups of researchers [46, 47, 88, 89, 90, 103, 104, 142], independently
proved, using at least three totally different approaches, that K̃λ,µ(q, t) is a polynomial with
integer coefficients, which itself had been a major unsolved problem since 19881. We should
mention that the Macdonald polynomiality result is immediately implied by the combinatorial
formula in §10.5. The paper by Garsia & Remmel [46] also contains a recursive formula for
the K̃λ,µ(q, t) when λ is an augmented hook, i.e., a hook plus the square (2, 2). Their formula
immediately implies nonnegativity and by iteration could be used to obtain various combina-
torial descriptions for this case. In 1999 G. Tesler (private communication) announced that,
by using plethystic methods, he could prove nonnegativity of the case where λ is a doubly
augmented hook, which is an augmented hook plus either the cell (2, 3) or (3, 2).

1 The first breakthrough on this problem appears to have been work of Lapointe & Vinet [101, 102] in 1995, who proved the
corresponding integrality result for Jack polynomials. This seemed to have the effect of breaking the ice, since it was shortly after
this that the proofs of Macdonald integrality were announced. As in the work of Kadell on Selberg’s integral [85, 86], this gives
another example of how results in Macdonald theory are often preceded by results on Jack polynomials.
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10.3.3 The Garsia–Haiman modules and the n!-conjecture

Given any bihomogeneous subspace W ⊆ C[Xn,Yn], we define the bigraded Hilbert series
of W as Hilb(W; q, t) :=

∑
i, j≥0 tiq j dim(W (i, j)), where the subspaces W (i, j) consist of those

elements of W that are bi-homogeneous of degree i in the x variables and j in the y variables,
so W =

⊕
i, j≥0 W (i, j). Also define the diagonal action of Sn on W by

(σ f )(x1, . . . , xn, y1, . . . , yn) := f (xσ1 , . . . xσn , yσ1 , . . . , yσn ), σ ∈ Sn, f ∈ W.

Clearly the diagonal action fixes the subspaces W (i, j), so we can define the bigraded Frobenius
series of W as Frob(W; q, t) :=

∑
i, j≥0 tiq j ∑

λ`n sλ Mult (χλ,W (i, j)). Similarly, let Wε be the
subspace of alternating elements in W, and define Hilb(Wε ; q, t)k :=

∑
i, j≥0 tiq j dim(Wε(i, j)).

As in the case of subspaces of C[Xn] we have Hilb(Wε ; q, t) = 〈Frob(Wε ; q, t), s1n〉.
For µ ∈ Par(n), let (c1, r1), . . . , (cn, rn) be the (a′ + 1, l′ + 1) = (column, row) coordinates

of the cells of µ, taken in some arbitrary order, and let ∆µ(Xn,Yn) :=
∣∣∣yc j−1

i xr j−1
i

∣∣∣
i, j=1,n. For

example,

∆(2,2,1)(X5,Y5) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 y1 x1 x1y1 x2
1

1 y2 x2 x2y2 x2
2

1 y3 x3 x3y3 x2
3

1 y4 x4 x4y4 x2
4

1 y5 x5 x5y5 x2
5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Note that, up to sign, ∆1n (Xn, 0) = ∆(Xn), the Vandermonde determinant.
For µ ` n, let V(µ) denote the linear span of ∆µ(Xn,Yn) and its partial derivatives of all

orders. Note that, although the sign of ∆µ may depend on the arbitrary ordering of the cells
of µ we started with, V(µ) is independent of this ordering. Garsia & Haiman [42] conjectured
Theorem 10.3.6 stated below. It was proved by Haiman [74] in 2001. It involves the modified
Macdonald polynomial

H̃µ = H̃µ(X; q, t) :=
∑
λ`n

K̃λ,µ(q, t)sλ. (10.3.17)

Theorem 10.3.6 For all µ ` n we have Frob(V(µ); q, t) = H̃µ.

Note that Theorem 10.3.6 implies K̃λ,µ(q, t) ∈ N[q, t].

Corollary 10.3.7 For all µ ` n, dim V(µ) = n! .

Remark 10.3.8 Corollary 10.3.7 was known as the n! conjecture. Although Theorem
10.3.6 appears to be much stronger, Haiman [73] proved in 1999 that it is implied by Corol-
lary 10.3.7.

It is clear from the definition of V(µ) that Frob(V(µ); q, t) = Frob(V(µ′); t, q). Theorem
10.3.6 thus gives a geometric interpretation to (10.3.16a).

Example 10.3.9 It is known that

H̃1n (X; q, t) = Frob(V(1n); q, t) = (t; t)n hn

[ X
1 − t

]
and H̃n(X; q, t) = (q; q)n hn

[
X

1 − q

]
.
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Before Haiman proved the general case using algebraic geometry, Garsia & Haiman [44]
proved the special case of the n! conjecture when µ is a hook by combinatorial methods. The
case where µ is an augmented hook was proved by Reiner [140].

From (10.3.9) we see that

H̃µ[X; q, t] = tn(µ)Jµ

[
X

1 − 1/t
; q, 1/t

]
= t−nPµ

[
X

1 − 1/t
; q, 1/t

]∏
x∈µ

(t l+1 − qa). (10.3.18)

Macdonald derived formulas for the coefficients in the expansion of ekPµ(X; q, t) (see [124,
(VI.6.24)]), and also of hk

[
X 1−t

1−q

]
Pµ(X; q, t), in terms of the Pλ(X; q, t). These expansions

reduce to the classical Pieri formulas for Schur functions discussed in Theorem 10.2.5 when
t = q. When expressed in terms of the Jµ, the hk Pieri rule becomes [124, §VI.8, Example 4]

hk

[
X

(1 − t)
1 − q

]
Jµ =

∑
λ∈Par

λ/µ is a horizontal k-strip

∏
x∈µ(1 − qaµ+χ(x∈B)tlµ+χ(x<B))∏
x∈λ(1 − qaλ+χ(x∈B)tlλ+χ(x<B))

Jλ,

where B is the set of columns which contain a cell of λ/µ, where aµ, lµ are the values of a, l
when the cell is viewed as part of µ, and where aλ, lλ are the values of a, l when the cell is
viewed as part of λ.

10.3.4 The space of diagonal harmonics

Let ph,k[Xn,Yn] =
∑n

i=1 xh
i yk

i , h, k ∈ N denote the polarized power sum. It is known that the
set

{
ph,k[Xn,Yn] | h + k ≥ 0

}
generates C[Xn,Yn]Sn , the ring of invariants under the diagonal

action. Thus a natural analog of the quotient ring Rn of co-invariants is the quotient ring DRn

of diagonal co-invariants defined by DRn := C[Xn,Yn]/
〈∑n

i=1 xh
i yk

i

〉
h,k∈Z; h+k>0

. By analogy we
also define the space of diagonal harmonics

DHn :=
{

f ∈ C[Xn,Yn]
∣∣∣∣ n∑

i=1

∂h

∂xh
i

∂k

∂yk
i

f = 0. h, k ∈ Z, h + k > 0
}
.

Many of the properties of Hn and Rn carry over to two sets of variables. For example DHn

is a finite dimensional vector space which is isomorphic to DRn as an Sn-module (under the
diagonal action). The dimension of these spaces turns out to be (n + 1)n−1, a result which was
first conjectured by Haiman [72] and proved by him in 2001 [75]. His proof uses many of
the techniques and results from his proof of the n! conjecture. See [150] for a nice expository
account of the n! theorem and the (n + 1)n−1 theorem.

Example 10.3.10 An explicit basis for DH2 is given by {1, x2 − x1, y2 − y1}. The elements
x2 − x1 and y2 − y1 form a basis for DHε

2. Thus Frob(DH2; q, t) = s2 + (q + t)s12 .

The number (n + 1)n−1 is known to count some interesting combinatorial structures. For ex-
ample, it counts the number of rooted, labelled trees on n+1 vertices with root node labelled 0.
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It also counts the number of parking functions on n cars. In the next section we discuss a con-
jecture of Haglund and Loehr which gives a combinatorial description for Hilb(DHn; q, t) in
terms of statistics on parking functions [61].

We let M := (1 − q)(1 − t) and Tµ := tn(µ)qn(µ′), wµ :=
∏

x∈µ (qa − tl+1)(tl − qa+1) (µ ∈ Par).
Haiman derives the (n + 1)n−1 result as a corollary of the following formula for the Frobenius
series of DHn.

Theorem 10.3.11 (Haiman, [75]) Let Bµ,Πµ are as in (10.3.4). Then

Frob(DHn; q, t) =
∑
µ`n

w−1
µ TµMH̃µΠµBµ. (10.3.19)

Theorem 10.3.11 was conjectured by Garsia & Haiman [43]. The conjecture was inspired in
part by suggestions of C. Procesi.

From (10.3.14) and the fact that Tµ = en[Bµ], we have 〈H̃µ, s1n〉 = Tµ. Thus, if we define

Cn(q, t) :=
∑
µ`n

w−1
µ T 2

µMΠµBµ (10.3.20)

then it follows by (10.3.19) that Cn(q, t) = 〈Frob(DHn; q, t), s1n〉 = Hilb(DHε
n; q, t). For in-

stance, from Example 10.3.10, we have C2(q, t) = q + t. The Cn(q, t) are referred to as the q, t-
Catalan sequence, since Garsia & Haiman [43] proved that Cn(1, 1) reduces to Cn = 1

n+1

(
2n
n

)
,

the nth Catalan number. The Cn have quite a history and arise very frequently in combina-
torics and elsewhere. See [149, Solution to Exercise 6.19], [151] for over 210 different objects
counted by the Catalan numbers.

10.3.5 The nabla operator

We begin this section with a slight generalization of the Koornwinder–Macdonald reciprocity
formula, in a form which occurs in [48].

Theorem 10.3.12 Let µ, λ ∈ Par, z ∈ R. Then

H̃µ[1 + z(MBλ − 1); q, t]∏
x∈µ(1 − zqa′ tl′ )

=
H̃λ[1 + z(MBµ − 1); q, t]∏

x∈λ(1 − zqa′ tl′ )
. (10.3.21)

Proof (Sketch) By cross multiplying, we can rewrite (10.3.21) as a statement saying two
polynomials in z are equal. Letting z = tn for n ∈ N, the two polynomials agree by (10.3.6)
and two polynomials which agree on infinitely many values must be equal. �

Remark 10.3.13 If |µ|, |λ| > 0, then we can cancel the factor of 1 − z in the denominators
on both sides of (10.3.21) and then set z = 1 to obtain

H̃µ[MBλ; q, t]
Πµ

=
H̃λ[MBµ; q, t]

Πλ
. (10.3.22)

Another useful special case of (10.3.21) is λ = ∅, which gives H̃µ[1−z; q, t] =
∏

x∈µ (1−zqa′ tl′ ).
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Let ∇ be the linear operator on symmetric functions which satisfies ∇H̃µ = TµH̃µ. It turns
out that many of the results in Macdonald polynomials and diagonal harmonics can be ele-
gantly expressed in terms of ∇. Some of the basic properties of ∇ were first worked out by F.
Bergeron [10], and more advanced applications followed in a series of papers by Bergeron,
Garsia, Haiman and Tesler [14, 15, 48].

Proposition 10.3.14 If n > 0 then ∇en =
∑
µ`n w−1

µ TµMH̃µΠµBµ. Hence Theorem 10.3.11
is equivalent to Frob(DHn; q, t) = ∇en.

Proof (Sketch) We see, by expressing (10.3.7b) in terms of the H̃µ and by using some simple
plethystic substitutions, that (10.3.14) is equivalent to en

[
XY
M

]
=

∑
µ`n w−1

µ H̃µ[X; q, t]H̃µ[Y; q, t].
Now let Y = M, use (10.3.22), and then apply ∇ to both sides. �

10.4 The combinatorics of the space of diagonal harmonics

10.4.1 The parking function model

A Dyck path is a lattice path in the first quadrant of the xy-plane from (0, 0) to (n, n) consisting
of unit north N and east E steps which never goes below the diagonal x = y. We let L+

n,n

denote the set of all such Dyck paths. A parking function σ is a placement of the integers
1, 2, . . . , n (called cars) just to the right of the N steps of a Dyck path, in such a way that
the numbers are strictly decreasing down columns. The reading word of σ is the permutation
obtained by reading the cars along diagonals in a SW direction, outside to in, as in Figure
10.5. To a given parking function σ, we associate two statistics area(σ) and dinv(σ). The area

Figure 10.5 A parking function with area = 9, dinv = 6, and reading word 64781532.

statistic is defined as the number of squares strictly below the Dyck path and strictly above
the diagonal. In Figure 10.5 the number of area cells in a given row is listed on the right
of that row. The dinv statistic is the number of pairs of cars which form either “primary” or
“secondary” inversions. Pairs of cars form a primary inversion if they are in the same diagonal,
with the larger car in a higher row. Pairs form a secondary inversion if they are in successive
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diagonals, with the larger car in the outer diagonal and in a lower row. For example, for the
parking function in Figure 10.5, car 8 forms primary inversions with cars 1 and 5, while car 5
forms a secondary inversion with car 3. The set of inversion pairs for this parking function
is {(6, 4), (7, 1), (8, 1), (8, 5), (5, 3), (3, 2)}, so dinv = 6 while area = 9. A conjecture of Loehr
and the author expresses Hilb(DHn; q, t) as a positive sum of monomials, one for each parking
function.

Conjecture 10.4.1 ([61], [58, Ch. 5])

Hilb(DHn; q, t) =
∑
σ

qdinv(σ)tarea(σ), (10.4.1)

where the sum is over all parking functions with n cars.

Remark 10.4.2 Armstrong [5] has recently introduced a hyperplane arrangement model
for Hilb(DHn; q, t) involving a pair of hyperplane arrangements with a statistic associated to
each one. See also [6]. He gives a bijection with parking functions which sends his pair of
hyperplane arrangement statistics to (area′, bounce), another pair of statistics which Haglund
and Loehr showed have the same distribution over parking functions as (dinv, area).

Haglund et al. [63] introduced a generalization of Conjecture 10.4.1 which gives a combi-
natorial formula for the coefficient of a monomial symmetric function in the character ∇en.
Their conjecture, formulated below, involves a shuffle of two sequences A and B, which is a
permutation where all the elements of A occur in order, and all the elements of B occur in
order, but the elements of A and B are intertwined in an arbitrary manner.

Conjecture 10.4.3 [63], [58, Ch. 6] (Shuffle Conjecture)
Let β, γ be two compositions with |β| + |γ| = n. Then 〈∇en, eβhγ〉 =

∑
σ qdinv(σ)tarea(σ), where

the sum is over all parking functions σ on n cars whose reading word is a shuffle of increasing
sequences (1, 2, · · · , γ1), (γ1 + 1, γ1 + 2, · · · , γ1 + γ2), . . . , and decreasing sequences (n, n −
1, · · · , n − β1 + 1), (n − β1, n − β1 − 1, · · · , n − β1 − β2 + 1), . . . .

See §10.10 for a discussion of recent work on this conjecture. If β = (n), the Shuffle Con-
jecture reduces to a theorem of Garsia and Haglund [40], [41], [58, Ch. 3], which gives a
combinatorial formula for the sign character of DHn, or equivalently for the rational function
Cn(q, t) defined in (10.3.20). More generally, if β = (n − d), γ = (d), the Shuffle Conjecture
reduces to the (q, t)-Schröder Theorem of Haglund [56], which can be described in terms of
sums over Schröder lattice paths consisting of north, east, and diagonal steps. If γ = 1n then
the Shuffle Conjecture reduces to Conjecture 10.4.1.

The Shuffle Conjecture can also be expressed in the following way.

Conjecture 10.4.4 (Alternate Form of the Shuffle Conjecture)

∇en =
∑
π∈L+

n,n

tarea(π)Fπ(X; q), (10.4.2)
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where the sum is over all Dyck paths π and

Fπ(X; q) =
∑

σ∈PF(π)

qdinv(σ)Fn,Des(read(σ)−1)(X). (10.4.3)

Here PF(π) denotes the set of all parking functions for the Dyck path π. For example, for
the parking function of Figure 10.5, the inverse descent set of the reading word is {2, 3, 5}, so
in (10.4.3) this parking function would be weighted by q6F8,{2,3,5}.

It is not at all obvious that the right-hand side of (10.4.2) is a symmetric function, but
in fact each of the Fπ(X; q) are symmetric functions. The proof of this relies on the theory
of LLT polynomials, which were introduced by Lascoux, Leclerc & Thibon [108] in 1997.
Their original construction is described in terms of ribbon tableaux, but we will present an
equivalent formulation due to M. Haiman and his student Bylund, which is presented in the
appendix of [62]. We start with a grid of dotted lines, all of slope 1, with the vertical distance
between successive dotted lines equaling 1. We then embed a tuple γ = (γ1, γ2, . . . , γk) of
skew shapes in this grid such that each square has one of the dotted lines as a diagonal of the
square, and we fill each γi with a SSYT Ti of that shape. In the example of Figure 10.6, the
tuple is (22, 22, 11). If T = (T1,T2, . . . ,Tk) denotes such a tuple of SSYT, we let inv(T) denote
the number of “inversion pairs” of T . An inversion pair is a pair of integers a, b, with b > a,
a, b in different skew shapes γi, and such that one of the two following conditions holds:
• a, b are on the same diagonal, with b in a column strictly left of a;
• a, b are on successive diagonals, with b strictly NE of a, i.e., b is in the diagonal just above

that containing a, and in a column strictly to the right of the one containing a.

For example, for the tuple in Figure 10.6, the 5 above the 3 in γ1 forms inversion pairs of the
first type with the 1 and 3 from γ2, and also with the 2 in γ3, while the 6 forms inversion pairs
with that same 5, 1, and 3, and also the 2 from γ1.

Figure 10.6 A tuple of SSYT occurring in the definition of an LLT product of the shapes (22, 22, 11).
This tuple has 13 inversion pairs.
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Theorem 10.4.5 (Lascoux–Leclerc–Thibon [108]; Haiman–Bylund, later included in [62])
Given any tuple of skew shapes (γ1, γ2, . . . , γk), the sum∑

T=(T1,...,Tk), Ti∈S S YT (γi)

qinv(T)xT (10.4.4)

is a symmetric function. Here xT is the product xT1 xT2 · · · xTk of the usual x-weights of the
SSYT.

We will refer to the symmetric function (10.4.4) as the LLT product of the γi. If the multiset
of numbers contained in the tuple T is just the set {1, 2, . . . , n}, we say T ∈ SYT(γ). Let
the reading word read(T) of an LLT tuple of SSYT be the word obtained by reading along
diagonals, outside to in, and in a NE direction along each diagonal, so for example the reading
word of the tuple in Figure 10.6 is 5362513231. Furthermore let ζ(T) denote the (unique)
element of SYT(γ) whose reading word is the same as the standardization of the reading word
of the tuple T. Then clearly inv(T) = inv(ζ(T)), so by Remark 10.2.8 we have:

Corollary 10.4.6 The LLT product of the γi in (10.4.4) can be expressed as∑
T=(T1,...,Tk)∈S YT (γ)

qinv(T)Fn,Des(read(T))−1)(X).

Corollary 10.4.7 The function Fπ(X; q) from (10.4.3) is a symmetric function.

Proof For each parking function σ occurring in the definition of Fπ, there is a corresponding
element T(σ) ∈ SYT(γ) where read(σ) = read(T(σ)), with the same set of inversion pairs
(see Figure 10.7 for an example). Hence, Fπ is an LLT product of vertical strips, and is thus
symmetric by Corollary 10.4.6. �

Figure 10.7 A SYT in the LLT product of vertical strips (13/12, 14/1, 13, 12/1, 12) with 5 inversion pairs.

Lascoux, Leclerc & Thibon [108] conjectured that any LLT product is Schur positive, i.e.,
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when expressed in the Schur basis the coefficients are in N[q]. Note that if q = 1, the LLT
product of the γi is just the product of Schur functions sγ1 sγ2 · · · sγk , which is Schur positive
by the Littlewood–Richardson rule. By results of Leclerc & Thibon [109], and Kashiwara &
Tanisaki [87], this conjecture is known to be true for the case where each γi is a partition (i.e.,
non-skew) shape, with the lower-left-hand square of each γi all on the same diagonal. In [63]
this result is extended somewhat to include the Fπ(X; q). In 2007 Grojnowski & Haiman [53]
announced a proof of the general case, which uses Kazhdan–Lusztig theory.

Remark 10.4.8 Haglund, Morse & Zabrocki [68] have introduced a refinement of the
Shuffle Conjecture known as the Compositional Shuffle Conjecture, which says the portion
of the right-hand side of (10.4.2) involving paths π which hit the main diagonal x = y at
touch points (a1, a1), (a1 + a2, a1 + a2), . . . , (n, n), can be expressed as ∇ applied to a com-
positional Hall–Littlewood polynomial. These generalized Hall–Littlewood polynomials are
defined using Jing operators; if the composition (a1, a2, . . .) is a partition µ they reduce to
(−1/q)nH̃µ′ (X; q, 0). Garsia, Xin, and & Zabrocki [38, 49] have used manipulations of plethys-
tic Macdonald polynomial identities and bijective results of Garsia’s student Hicks [78] to
prove many special cases of this conjecture; in particular they obtain a Compositional (q, t)-
Schröder Theorem.

Remark 10.4.9 In his original work [72] on diagonal harmonics, Haiman introduced a more
general space DH(k)

n , where k is a positive integer. When k = 1 it reduces to DHn. Haiman [75]
proved that Frob(DH(k)

n ) = ∇ken, and most of the combinatorial conjectures in this section have
“parameter k” versions, involving lattice paths in an n × kn-rectangle which never go below
the diagonal x = ky. In particular, there is a parameter k version of the Shuffle Conjecture
[63], but at this writing even the sign-character case of this remains open.

Recently a dramatic generalization of the Shuffle Conjecture, and also the extension of it
discussed in Remark 10.4.9, has been introduced. Many different researchers played a role in
its formulation. It depends on a pair (m, n) of relatively prime positive integers. The combi-
natorial side of this conjecture occurs both in work of Hikita [79], and unpublished work of
D. Armstrong, and it is fully described in [51] and also [39].

Let Grid(m, n) be the n×m grid of labelled squares whose upper-left-hand corner square is
labelled with (n− 1)(m− 1)− 1, and whose labels decrease by m as you go down columns and
by n as you go across rows. For example,

Grid(3, 7) =

11 4 −3
8 1 −6
5 −2 −9
2 −5 −12
−1 −8 −15
−4 −11 −18
−7 −14 −21

To the corners of the squares of Grid(m, n) we associate Cartesian coordinates, where the
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lower-left-hand corner of the grid has coordinates (0, 0), and the upper-right-hand corner of
the grid (m, n). An (m, n)-Dyck path is a lattice path of unit N and E steps from (0, 0) to (m, n)
which never goes below the line nx = my, and we denote the set of such paths by L+

(m,n). One
finds that L+

(m,n) is the same as the set of lattice paths π from (0, 0) to (m, n) for which none of
the squares with negative labels are above π. For a given π, we let area(π) denote the number of
squares in Grid(m, n) with positive labels which are below π. Furthermore, let dinv(π) denote
the number of squares in Grid(m, n) which are above π and whose arm and leg lengths satisfy

a
l + 1

<
m
n
<

a + 1
l

. (10.4.5)

Here by the arm of a square s we mean the number of squares in the same row as s, to the
right of s, and to the left of π. The leg of s is the number of squares below s and in its column,
and above π. For example, if (m, n) = (3, 7) and π = NNNNNEENNE, then area(π) = 2
(corresponding to the squares with labels 2 and 5), and dinv(π) = 2; the squares with labels
11, 8, 4, 1 have a = l = 1; a = 1, l = 0; a = 0, l = 1; a = l = 0, respectively, and so the squares
with labels 8 and 11 do not satisfy (10.4.5), while the squares with labels 1 and 4 do.

Let an (m, n)-parking function be a path π ∈ L+
(m,n) together with a placement of the integers

1 through n (called cars) just to the right of the N steps of π, with strict decrease down
columns. For such a pair P, for 1 ≤ j ≤ n we let rank( j) be the label of the square that
contains car j, and we set

tdinv(P) :=
∣∣∣∣ {(i, j) | 1 ≤ i < j ≤ n and rank(i) < rank( j) < rank(i) + m

} ∣∣∣∣ .
Furthermore, define the reading word read(P) to be the permutation obtained by listing the
cars by decreasing order of their ranks. For example, for the (3, 7)-parking function of Figure
10.8, tdinv = 3, with inversion pairs formed by pairs of cars (6, 7), (4, 6), and (2, 4), and the
reading word is 7642531.

Figure 10.8 A (3, 7)-parking function.

Let maxtdinv(π) be tdinv of the parking function for π whose reading word is the reverse
of the identity, and for any parking function P for π set dinv(P) := dinv(π) + tdinv(P) −
maxtdinv(π). We remark that, given a π ∈ Ln+1,n and σ ∈ PF(π), the above definitions of
the dinv and area statistics are the same as the ones given by our original definition, if we
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simply remove the last E step to form a path π′ ∈ L+
n,n, and view σ as a parking function for

π′. Furthermore, the reading word of σ is also the same in both contexts. Hence, the above
construction reduces to the original when m = n + 1.

There is an amazing extension of the symmetric function∇en which has emerged from work
of Burban, Schiffman, Vasserot [22, 145, 146], Negut [136] and others on the elliptic Hall
algebra and other related objects in algebraic geometry and string theory. Bergeron et al. [16]
have given a concrete description of the construction of these symmetric functions, by means
of a family of plethystic operators on symmetric functions Q(m,n), defined recursively below.
They satisfy Q(m+n,n)(−1)n = ∇Q(m,n)(−1)n, where the (−1)n in these relations indicates they
are applied to the constant (−1)n, viewed as an element of Λ. Furthermore Q(kn+1,n)(−1)n =

∇ken, so they contain ∇en and the symmetric functions from Remark 10.4.9 as special cases.
To construct the Q(m,n), first let Dk be the operator on symmetric functions F(X) defined by

DkF[X] := F
[
X + M

z

] ∑
i≥0

(−z)iei[X]
∣∣∣∣
zk
,

where . . . |zk means “take the coefficient of zk in . . .”, and again M = (1 − q)(1 − t). The Dk

operators were introduced in [48]; they form important building blocks in the development of
plethystic identities involving Macdonald polynomials. We require the following Proposition.

Proposition 10.4.10 [17]
For any coprime pair of integers (m, n) with m, n > 1, there is a unique pair (a, b) satisfying

(1) 1 ≤ a ≤ m − 1, (2) 1 ≤ b ≤ n − 1, (3) mb + 1 = na.

Let c = m − a and d = n − b. Then both (a, b) and (c, d) are coprime pairs.

For coprime m, n > 1 write Split(m, n) = (a, b) + (c, d), and otherwise set

(a) Split(1, n) = (1, n − 1) + (0, 1), (b) Split(m, 1) = (1, 0) + (m − 1, 1).

If Split(m, n) = (a, b) + (c, d), recursively set Q(m,n) := M−1 [
Q(c,d),Q(a,b)

]
with base cases

Q(1,0) = D0 and Q(0,1) = −e1. Here e1 is multiplication by e1 and [x, y] = xy − yx.

Conjecture 10.4.11 [39, 51] (Rational Shuffle Conjecture)
For any pair of relatively prime positive integers (m, n) and any pair of compositions α, β with∑

i α +
∑

j β = n, we have

〈Q(m,n)(−1)n, eαhβ〉 =
∑

(m, n) parking functions P
read(P) is an α, β shuffle

qdinv(P)tarea(π), (10.4.6)

where the sum is over all (m, n) parking functions P whose reading word is a shuffle of de-
creasing sequences of lengths α1, α2, . . . and increasing sequences of lengths β1, β2, . . ..

An alternate formulation of Conjecture 10.4.11 is

Q(m,n)(−1)n =
∑
π∈L+

m,n

tarea(π) Fπ(X; q), (10.4.7)
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where Fπ(X; q) :=
∑
σ∈PF(π) qdinv(σ)Fn,Des(read(σ)−1)(X). We leave it as an exercise for the inter-

ested reader to show that for any π ∈ L+
(m,n), Fπ(X; q) is an LLT product of vertical strips, times

a power of q. Hence the ight-hand side of (10.4.7) is a Schur positive symmetric function.

Remark 10.4.12 The right-hand side of (10.4.7) first arises in work of Hikita [79], who
proved it is the bigraded Frobenius series of a certain module arising from affine Springer
fibers. When m = n + 1, though, this module is not obviously isomorphic to DHn.

Example 10.4.13 When t = 1/q, we have [39] q(m−1)(n−1)/2Q(m,n)(−1)n = en[X[m]q]/[m]q,
where [m]q := (1 − qm)/(1 − q). As a special case we have, when t = 1/q,

q(m−1)(n−1)/2〈Q(m,n)(−1)n, s1n〉 =
[
n+m−1

n

]
q
, (10.4.8)

where
[
n+m−1

n

]
q

is the q-binomial coefficient. D. Stanton has asked for a statistic qstat which

would allow us to express the right-hand side of (10.4.8) as a sum of qstat over (m, n)-Dyck
paths. In the case m = n + 1 MacMahon [128, p. 214] proved that you can generate this using
qstat = maj, where, for the computation of maj on a Dyck path π, you write π as a sequence
of N and E steps, replace each E by a 1 and each N by a 0, then take the usual maj statistic
on words. For general (m, n) there is no known variant of maj which works, but if we assume
Conjecture 10.4.6 we can use qstat = dinv +(m − 1)(n − 1)/2 − area.

10.4.2 The superpolynomial knot invariant

In 2006 Dunfield, Gukov & Rasmussen [31] hypothesized the existence of a three-parameter
knot invariant PK(a, q, t), now known as the superpolynomial knot invariant of a knot K,
which includes the HOMFLY polynomial as a special case. Since then various authors pro-
posed different possible definitions of the superpolynomial, which are conjecturally all equiv-
alent. These definitions typically involve homology though, and they are difficult to compute.

Let (m, n) be a pair of relatively prime positive integers, and let T(m,n) denote the (m, n) torus
knot, which is the knot obtained by wrapping a string around the torus at an angle such that by
the time you return to the starting point, you have wrapped around m times in one direction
and n in the other. An accepted definition of PT(m,n) (a, q, t) has emerged from work of Aganagic
& Shakirov [1, 2] (using refined Chern–Simons theory) and Cherednik [27] (using the double
affine Hecke algebra). Gorsky & Negut [51] showed that these two different constructions
yield the same three-parameter knot invariant which is now accepted as the definition of the
superpolynomial for torus knots. Let

P̃(m,n)(u, q, t) := q(m−1)(n−1)PT(m,n) (u, 1/q, 1/t) (10.4.9)

denote the modified superpolynomial of T(m,n). It can be described analytically as

n∑
d=0

(−u)d〈Q(m,n)(−1)n, en−dhd〉,
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which is basically the generating function for hook shapes for the symmetric function oc-
curring in Conjecture 10.4.6. Thus, if we assume this conjecture, we have a nice positive
expression for the modified superpolynomial for torus knots. See also [52, 60, 137].

Remark 10.4.14 In [39] the Compositional Rational Shuffle Conjecture is introduced,
which contains both the Rational Shuffle Conjecture and the Compositional Shuffle Conjec-
ture as special cases. The key element in the conjecture is a subtle construction of Q(m,n)

operators for non-relatively prime (m, n).

10.4.3 Tesler matrices and a polynomial formula for the Hilbert series of DHn

Haglund [59] obtained a new polynomial expression for Hilb(DHn). The expression is in
Z[q, t], and has some negative coefficients, but hopefully further work will lead to a positive
expression as in (10.4.1). A Tesler matrix of order n is an n × n upper-triangular matrix of
nonnegative integers such that for any j in the range 1 ≤ j ≤ n, the sum of all the entries in
the jth row of the matrix, minus the sum of all the entries in the jth column strictly above the
diagonal, equals 1. Let Qn denote the set of Tesler matrices of order n. Then the elements of
Q3 are

1 0 0
0 1 0
0 0 1

 ,

1 0 0
0 0 1
0 0 2

 ,

0 1 0
0 2 0
0 0 1

 ,

0 1 0
0 1 1
0 0 2

 ,

0 1 0
0 0 2
0 0 3

 ,

0 0 1
0 1 0
0 0 2

 ,

0 0 1
0 0 1
0 0 3

 .
Let [k]q,t := (tk − qk)/(t − q) denote the (q, t)-analog of the integer k, and recall that M =

(1 − q)(1 − t). We associate the weight wt(C) := (−M)pos(C)−n ∏
ci j>0 [ci j]q,t to each Tesler

matrix C, where pos(C) is the number of positive entries in C. For example,

wt


0 1 0
0 1 1
0 0 2

 = (t + q)(−M) = −(t + q)(1 − q)(1 − t).

Theorem 10.4.15 [59]

Hilb(DHn) =
∑

C∈Qn

wt(C). (10.4.10)

Example 10.4.16 When n = 3 (10.4.10) becomes

Hilb(DH3) = 1 + (t + q) + (t + q) − (1 − q)(1 − t)(t + q)

+ (t + q)(t2 + tq + q2) + (t + q) + (t2 + tq + q2).

Note. Formula (10.4.10) is clearly a polynomial. One advantage it has over (10.4.1) is that
it is also clearly symmetric in q, t, in fact is a sum of Schur functions in the set of variables
{q, t}. It is known [13] that Hilb(DHn; q, t) is a sum of terms of this form, and more generally
so is 〈Frob(DHn; q, t), sλ〉 for any λ, but there is no known combinatorial description of these
coefficients. Since −M = −1+ s1(q, t)− s1,1(q, t), and [k]q,t = sk−1(q, t), (10.4.10) together with
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the Littlewood–Richardson rule can be used to obtain an expression for Hilb(DHn; q, t) as an
alternating sum of sλ(q, t). One approach to to the problem would be to study how negative
terms cancel in this sum.

Remark 10.4.17 Formula (10.4.10) generalizes easily to a formula for Hilb(DH(k)
n ), by sum-

ming over matrices whose hook-sums are 1, k, k, . . . , k, and using the same weights wt(C) [59].

10.4.4 More recent work involving Tesler matrices

In 2015 Gorsky & Negut [51] proved the following formula for the modified superpolynomial
of the (m, n) torus knot defined in (10.4.9). They derived it from their contour integral identity
[51, (52)].

Theorem 10.4.18 [51] For any pair of positive, relatively prime integers (m, n),

P̃(m,n)(u, q, t) =
∑

C∈Q(m)
n

∏
1≤i≤n
ci,i>0

(1 − u)
∏

1≤i<n

(
[ci,i+1 + 1]q,t − [ci,i+1]q,t

) ∏
2≤i+1< j≤n

(−M)[ci, j]q,t.

Garsia & Haglund [37] derived a Tesler matrix expression for ∇en. Mészáros, Morales &
Rhoades [134, 135] introduced the Polytope of Tesler Matrices, whose points with integer
coordinates are in bijection with Tesler matrices. Connections between DHn and polytopes
were further developed in [118]. Wilson [154] obtained Tesler matrix formulas for a broad
class of functions of the form 〈F, hn

1〉.

10.5 The expansion of the Macdonald polynomial into monomials

In this section we give a combinatorial description of the modified Macdonald polynomial
H̃µ(X; q, t) (see (10.3.17)), and discuss its consequences. Let µ ` n. We let dg(µ) denote the
augmented diagram of µ, consisting of µ together with a row of squares below µ, referred to
as the basement, with coordinates ( j, 0), 1 ≤ j ≤ µ1. Define a filling σ of µ to be an assignment
of a positive integer to each square of µ. For s ∈ µ, we let σ(s) denote the integer assigned to s,
i.e the integer occupying s. Let the reading word read(σ) = σ1σ2 · · ·σn be the word obtained
by reading the occupants of µ across rows left to right, starting with the top row and working
downwards. Note that the reading word does not include any of the entries in the basement. In
this section we assume the basement is occupied by virtual infinity symbols, i.e., σ( j, 0) = ∞.

For each filling σ of µ we associate x, q and t weights. The x weight is defined in a similar
fashion to SSYT, namely xσ :=

∏
s∈µ xσ(s). For s ∈ µ, let North(s) denote the square of µ

right above s (if it exists) in the same column, and South(s) the square of dg(µ) directly below
s, in the same column. Let the descent set of σ, denoted Des(σ, µ), be the set of squares
s ∈ µ where σ(s) > σ(South(s)). (In this section we regard the basement as containing
virtual infinity symbols, so no square in the bottom row of σ can be in Des(σ, µ).) Finally set
maj(σ, µ) :=

∑
s∈Des(σ,µ)(l(s) + 1). Note that maj(σ, 1n) = maj(read(σ)), where maj is the usual

major index statistic, defined as the sum of those i for which σi > σi+1.
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Below a and l will denote the arm and leg lengths, as in Figure 10.3. We say a square u ∈ µ
attacks all other squares v ∈ µ in its row and strictly to its right, and all other squares v ∈ dg(µ)
in the row below and strictly to its left. We say u, v attack each other if u attacks v or v attacks
u. An inversion pair of σ is a pair of squares u, v where u attacks v and σ(u) > σ(v). Let
invset(σ, µ) denote the set of inversion pairs of σ, and set

inv(σ, µ) := | invset(σ, µ)| −
∑

s∈Des(σ,µ)

a(s). (10.5.1)

For example, if σ is the filling on the left in Figure 10.9 then

Des(σ) = {(1, 2), (1, 4), (2, 3), (3, 2)}, maj(σ) = 3 + 1 + 2 + 1 = 7,

invset(σ) =
{
{(1, 4), (2, 4)}, {(2, 4), (1, 3)}, {(2, 3), (1, 2)}, {(1, 2), (3, 2)},

{(2, 2), (3, 2)}, {(2, 2), (1, 1)}, {(3, 2), (1, 1)}, {(2, 1), (3, 1)}, {(2, 1), (4, 1)}
}
,

inv(σ) = 9 − (2 + 1 + 0 + 0) = 6.

Note that inv(σ, (n)) = inv(read(σ)), where inv is the usual inversion statistic on words.

Figure 10.9 On the left, a filling of (4, 3, 2, 2) with reading word 64243321411 and on the right, its
standardization.

Definition 10.5.1 For µ ` n, let

Cµ(X; q, t) =
∑

σ : µ→Z+

xσtmaj(σ,µ)qinv(σ,µ). (10.5.2)

We define the standardization of a filling σ, denoted ζ(σ), to be the standard filling whose
reading word is the standardization of read(σ). Figure 10.9 gives an example of this. It is
immediate from Definition 10.5.1 and Remark 10.2.8 that

Cµ(X; q, t) =
∑
τ∈Sn

tmaj(τ,µ)qinv(τ,µ)Fn,Des(τ−1)(X), (10.5.3)

where we identity a permutation τ with the standard filling whose reading word is τ.

Remark 10.5.2 There is another way to view inv(σ, µ) which will prove useful to us. Call
three squares u, v,w, with u, v ∈ µ, w = South(u), and with v in the same row as u and strictly
to the right of µ, a triple. Given a standard filling σ, we define an orientation on such a triple
by starting at the square, either u, v or w, with the smallest element of σ in it, and going in
a circular motion, towards the next largest element, and ending at the largest element. We
say the triple is an inversion triple or a coinversion triple depending on whether this circular
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motion is counterclockwise or clockwise, respectively. Note that since σ( j, 0) = ∞, if u, v are
in the bottom row of σ, they are part of a counterclockwise triple if and only if σ(u) > σ(v).
Extend this definition to (possibly non-standard) fillings by defining the orientation of a triple
to be the orientation of the corresponding triple for the standardized filling ζ(σ). (So for two
equal numbers, the one which occurs first in the reading word is regarded as being smaller).
It is an easy exercise to show that inv(σ, µ) is the number of counterclockwise triples. For
example, for the filling in Figure 10.9, the set consisting of the inversion triples is{

{(1, 3), (1, 4), (2, 4)}, {(1, 2), (1, 3), (2, 3)}, {(1, 1), (1, 2), (3, 2)},

{(2, 1), (2, 2), (3, 2)}, {(2, 1), (3, 1), (2, 0)}, {(2, 1), (4, 1), (2, 0)}
}
.

The following theorem was conjectured by Haglund [55] and proved by Haglund, Haiman
& Loehr [62, 64]. It gives a combinatorial formula for the modified Macdonald polynomil H̃µ.

Theorem 10.5.3 Cµ(X; q, t) = H̃µ(X; q, t) (µ ∈ Par).

Remark 10.5.4 Theorem 10.3.6 or (10.3.16a) imply the well-known symmetry relation

H̃µ(X; q, t) = H̃µ′ (X; t, q). (10.5.4)

This can be derived fairly easily from the three axioms in Theorem 10.5.5 below. An inter-
esting open question in enumerative combinatorics is to prove this symmetry combinatorially
using Theorem 10.5.3. Note that in the case µ = (n) this question is equivalent to asking for
a bijective proof that maj and inv have the same distribution on arbitrary multisets, which is a
classical result due to Foata [34].

10.5.1 Proof of Theorem 10.5.3

Theorem 10.3.1, when translated into a statement about the H̃µ by using (10.3.18), gives (see
[62, 73]):

Theorem 10.5.5 The following three conditions uniquely determine a family H̃µ(X; q, t) of
symmetric functions.

H̃µ[X(q − 1); q, t] =
∑
ρ≤µ′

cρ,µ(q, t)mρ(X), (10.5.5a)

H̃µ[X(t − 1); q, t] =
∑
ρ≤µ

dρ,µ(q, t)mρ(X), (10.5.5b)

H̃µ(X; q, t)|xn
1

= 1. (10.5.5c)

Hence if one can show that Cµ(X; q, t) is a symmetric function and satisfies the three axioms
above, it must be equal to H̃µ. The fact that Cµ(X; q, t) satisfies (10.5.5c) is trivial.

Next we argue that Cµ can be written as a sum of LLT polynomials. Fix a descent set D,
and let GD(X; q) =

∑
σ : µ→Z+; Des(σ, µ)=D

qinv(σ, µ)xσ. If µ has one column, then GD is a ribbon

Schur function, that is a Schur function of a skew shape containing no 2 × 2 square blocks of
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Figure 10.10 On the left, a filling σ, and on the right, the term T(σ) in the corresponding LLT product
of ribbons.

contiguous cells. More generally, GD(X; q) is an LLT product of ribbons. We illustrate how to
transform a filling σ into a term T(σ) in the corresponding LLT product in Figure 10.10. Note
that inversion pairs in σ are in direct correspondence with LLT inversion pairs in T(σ). Since
the shape of the ribbons in T(σ) depends only on Des(σ, µ) we have

Cµ(X; q, t) =
∑

D

tLq−AGD(X; q), (10.5.6)

where the sum is over all possible descent sets D of fillings of µ, with

L =
∑
s∈D

(l(s) + 1), A =
∑
s∈D

a(s).

Since LLT polynomials are symmetric functions, Cµ is a symmetric function. Hence (10.5.3)
combined with general results on symmetric functions implies [62], [58, Ch. 6]

ωWCµ[Z + W; q, t] =
∑
β∈Sn

tmaj(β,µ)qinv(β,µ)F̃n,Des(β−1)(Z,W), (10.5.7)

where ωW is the involution ω acting on the W-set of variables, leaving the Z-set alone, and

F̃n,D(Z,W) =
∑

a1≤a2≤···≤an
ai=ai+1∈A+ =⇒ i<D
ai=ai+1∈A− =⇒ i∈D

za1 za2 · · · zan .

Here the indices ai range over the alphabet A± = {1, 1̄, 2, 2̄, . . .}, which is the union of A+ =

{1, 2, . . .} and A− = {1̄, 2̄, . . .}, and by convention zā = wa. Formula (10.5.7) is known as
the superization of Cµ, and F̃n,D(Z,W) the super quasisymmetric function. It is important to
note that (10.5.7) holds no matter what ordering we take for the elements of A±; we will be
working with the two orderings

1 < 1̄ < 2 < 2̄ < · · · < n < n̄, (10.5.8a)

1 < 2 < · · · < n < n̄ < · · · < 2̄ < 1̄. (10.5.8b)
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Assume (10.5.8a) holds. By letting zi = qxi and wi = −xi in (10.5.7), by an extension of
Remark 10.2.8 we get an expression for Cµ[Xn(q− 1); q, t] as a sum over “super fillings” σ̃ of
dg(µ). In [62] the authors introduced a sign-reversing involution which pairs super fillings with
the same weight but opposite sign, leaving only terms whose monomial weights visibly satisfy
the triangularity condition ρ ≤ µ′ occurring on the right-hand-side of (10.5.5a). Next assume
(10.5.8b) holds. By letting zi = txi and wi = −xi in (10.5.7) we get an expression in terms
of super fillings for Cµ[Xn(t − 1); q, t]. In [62] the authors introduce a different sign-reversing
involution for this case, which after cancellation leaves only terms whose monomial weights
visibly satisfy the triangularity condition ρ ≤ µ occurring on the right-hand-side of (10.5.5b).
We conclude that Cµ(Xn; q, t) satisfies all three axioms and hence must equal H̃µ(Xn; q, t). �

Remark 10.5.6 The reader will notice the similarity between the inv(σ, µ) statistic and
the dinv statistic on parking functions from §10.4. In fact, it was elements of the Shuffle
Conjecture combined with known ways of expressing special cases of H̃µ(X; q, t) in terms of
LLT polynomials which led the author to conjecture Theorem 10.5.3 in [55]. See [57] for a
detailed description of this story.

10.6 Consequences of Theorem 10.5.3

10.6.1 The cocharge formula for Hall–Littlewood polynomials

In this subsection we show how to derive (10.2.6), Lascoux and Schützenberger’s formula for
the Schur coefficients of the Hall–Littlewood polynomials, from Theorem 10.5.3. This appli-
cation was first published in [62] and [64], although the exposition here is taken mainly from
[57]. We require the following lemma, the proof of which is due to N. Loehr and G. Warring-
ton (private communication, 2003).

Lemma 10.6.1 Let µ ` n. Given multisets Mi, 1 ≤ i ≤ `(µ), of positive integers with
|Mi| = µi, there is a unique filling σ with the property that the multiset of elements of σ in the
ith row of µ is Mi for 1 ≤ i ≤ `(µ), and inv(σ, µ) = 0.

Proof Clearly the elements in the bottom row will generate no inversion triples if and only if
they are in monotone nondecreasing order in the reading word. Consider the number to place
in square (1, 2), i.e., right above the square (1, 1). Let p be the smallest element of M2 which
is strictly larger than σ(1, 1), if it exists, and the smallest element of M2 otherwise. Then if
σ(1, 2) = p, one sees that (1, 1) and (1, 2) will not form any inversion triples with ( j, 2) for
any j > 1. We can iterate this procedure. In square (2, 2) we place the smallest element of
M2 − {p} (the multiset obtained by removing one copy of p from M2) which is strictly larger
than σ(2, 1), and so on, until we fill out row 2. Then we let σ(1, 3) be the smallest element of
M3 which is strictly larger than σ(1, 2), if it exists, and the smallest element of M3 otherwise,
etc. Each square (i, j) cannot be involved in any inversion triples with (i, j − 1) and (k, j)
for some k > i, so inv(σ, µ) = 0. For example, if M1 = {1, 1, 3, 6, 7}, M2 = {1, 2, 4, 4, 5},
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M3 = {1, 2, 3} and M4 = {2}, then the corresponding filling with no inversion triples is given
in Figure 10.11. �

Given a filling σ, we construct a word cword(σ) by initializing cword to the empty string,
then scanning through read(σ), from the beginning to the end, and each time we encounter
a 1, adjoin the number of the row containing this 1 to the beginning of cword. After recording
the row numbers of all the 1’s in this fashion, we go back to the beginning of read(σ), and
adjoin the row numbers of squares containing 2’s to the beginning of cword. For example, if
σ is the filling in Figure 10.11, then cword(σ) = 11222132341123.

Figure 10.11 A filling with no inversion triples.

Assume σ is a filling with no inversion triples. We translate the statistic maj(σ, µ) into a
statistic on cword(σ). Note that σ(1, 1) corresponds to the rightmost 1 in cword(σ) – denote
this 1 by w11. If σ(1, 2) > σ(1, 1), σ(1, 2) corresponds to the rightmost 2 which is left of w11,
otherwise it corresponds to the rightmost 2 (in cword(σ)). In any case denote this 2 by w12.
More generally, for i > 1 the element in cword(σ) corresponding toσ(1, i) is the first i encoun-
tered when travelling left from w1,i−1, looping around and starting at the right end of cword(σ)
if necessary. To find the subword w21w22 · · ·w2µ′2 corresponding to the second column of σ,
we do the same algorithm on the word obtained by removing the elements w11w12 · · ·w1µ′1
from cword(σ). After that we remove w21w22 · · ·w2µ′2 and apply the same process to find
w31w32 · · ·w3µ′3 etc..

Clearly σ(i, j) ∈ Des(σ, µ) if and only if wi j occurs to the left of wi, j−1 in cword(σ). Thus
maj(σ, µ) is transparently equal to the statistic cocharge(cword(σ)) described in the Cocharge
Algorithm in §10.2.2.

We associate a two-line array A(σ) to a filling σ with no inversions by letting the upper row
A1(σ) be nonincreasing with the same weight as σ, and the lower row A2(σ) be cword(σ). For

example, we associate the two-line array
7 6 5 4 4 3 3 2 2 2 1 1 1 1
1 1 2 2 2 1 3 2 3 4 1 1 2 3

to the filling in Figure

10.11. By construction, below equal entries in the upper row the entries in the lower row are
nondecreasing. Since H̃µ is a symmetric function, we can reverse the variables, replacing xi

by xn−i+1 for 1 ≤ i ≤ n, without changing the sum. This has the effect of changing A1(σ)
into a nondecreasing word, and we end up with an ordered two-line array as in the classic
RSK algorithm (see [149, Ch. 7]). We can invert this correspondence since from the two-line
array we get the multiset of elements in each row of σ, which uniquely determines σ by
Lemma 10.6.1. Thus, by Theorem 10.5.3, we get for the modified Hall–Littlewood polynomi-
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als H̃µ(X; 0, t) (see (10.3.17)) that

H̃µ(x1, x2, . . . , xn; 0, t) =
∑

σ: inv(σ,µ)=0

xweight(A1(σ))tcocharge(A2(σ)) =
∑

(A1,A2)

xweight(A1)tcocharge(A2),

(10.6.1)
where the sum is over ordered two-line arrays satisfying weight(A2) = µ.

Now it is well known that for any word w of partition weight, we have cocharge(w) =

cocharge(read(Pw)), where read(Pw) is the reading word of the insertion tableau Pw under the
RSK algorithm [129, pp. 48–49], [149, p.417]. Hence application of the RSK algorithm to
(10.6.1) gives

H̃µ(x1, x2, . . . , xn; 0, t) =
∑
(P,Q)

xweight(Q)tcocharge(read(P)),

where the sum is over all pairs (P,Q) of SSYT of the same shape with weight(P) = µ. Since
the number of different Q tableaux of weight ν matched to a given P tableau of shape λ is
equal to the Kostka number Kλ,ν, we can finish the proof of (10.2.6) by writing

H̃µ(X; 0, t) =
∑
ν

mν

∑
λ

∑
P∈SSYT(λ,µ)
Q∈SSYT(λ,ν)

tcocharge(read(P))

=
∑
λ

∑
P∈SSYT(λ,µ)

tcocharge(read(P))
∑
ν

mνKλ,ν =
∑
λ

sλ
∑

P∈SSYT(λ,µ)

tcocharge(read(P)).

10.6.2 Formulas for Jµ

By (10.3.18) we have for the Macdonald integral form Jµ (see (10.3.9)) that

Jµ(Z; q, t) = tn(µ)H̃µ[Z(1 − t); q, 1/t] = tn(µ)H̃µ[Zt(1/t − 1); q, 1/t]

= tn(µ)+nH̃µ′ [Z(1/t − 1); 1/t, q],

with use of (10.5.4). Given a super filling σ̃, let |σ̃| be the filling obtained by replacing each
negative letter i by the corresponding positive letter i for all i. Say σ̃ is nonattacking if no two
squares containing equal entries in |σ̃| attack each other (in the sense of the paragraph above
(10.5.1)). Formula (10.5.7) and the first sign-reversing involution from the proof of Theorem
10.5.3 imply

Jµ(Z; q, t) =
∑

nonattacking super fillings σ̃ of µ′
z|σ̃|qmaj(σ̃,µ′)tcoinv(σ̃,µ′)(−t)neg(σ̃), (10.6.2)

where coinv := n(µ) − inv is the number of coinversion triples, and we use the ordering
1 < 1 < 2 < 2 < · · · < n < n.

The following more compact form of (10.6.2) can be obtained by grouping together all the
2n super fillings σ̃ whose absolute value equals a fixed positive filling σ.

Corollary 10.6.2 (Haglund–Haiman–Loehr [62])
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Jµ(Z; q, t) =
∑

nonattacking fillings σ of µ′
zσqmaj(σ,µ′)tcoinv(σ,µ′)

×
∏
u∈µ′

σ(u)=σ(South(u))

(1 − ql(u)+1ta(u)+1)
∏
u∈µ′

σ(u),σ(South(u))

(1 − t), (10.6.3)

where coinv = n(µ) − inv is the number of coinversion triples, and each square in the bottom
row is included in the last product.

Example 10.6.3 Let µ = (3, 3, 1). Then for the nonattacking filling σ of µ′ in Figure 10.12,
we have coinversion triples {1, 2), (2, 2), (1, 1)}, {(1, 1), (2, 1), (1, 0)}, {(1, 1), (3, 1), (1, 0)} so
coinv = 3. Furthermore maj = 3, squares (1, 1), (1, 2), (2, 1), (2, 3) and (3, 1) each contribute
a (1 − t), square (1, 3) contributes a (1 − qt2), and (2, 2) contributes a (1 − q2t). Thus the term
in (10.6.3) corresponding to σ is x1x3

2x2
3x4q3t3(1 − qt2)(1 − q2t)(1 − t)5.

Figure 10.12 A nonattacking filling of (3, 3, 1)′.

The (integral form) Jack polynomials J(α)
µ (Z) can be obtained from the Macdonald Jµ by

J(α)
µ (Z) = limt→1 (1 − t)−|µ|Jµ(Z; tα, t). If we set q = tα in (10.6.3) and then divide by (1 − t)|µ|

and take the limit as t → 1 we get the following result of Knop & Sahi [91].

J(α)
µ (Z) =

∑
nonattacking fillings σ of µ′

zσ
∏
u∈µ′

σ(u)=σ(South(u))

(α(l(u) + 1) + a(u) + 1). (10.6.4)

Remark 10.6.4 There is another formula for Jµ [58, pp. 132–133] corresponding to the
second sign-reversing involution from the proof of Theorem 10.5.3, a formula which gives
the expansion of Jµ into fundamental quasisymmetric functions Fα. The terms in the formula
are not as elegant as those of (10.6.3) though, and we will not describe it here.

10.6.3 Schur coefficients

Since by (10.5.6) H̃µ(X; q, t) is a positive sum of LLT polynomials, Grojnowski & Haiman’s
result [53] that LLT polynomials are Schur positive gives a new proof that K̃λ,µ(q, t) ∈ N[q, t].
In fact, we also get a natural decomposition of K̃λ,µ(q, t) into “LLT components”. This result
is completely geometric though, and it is still hoped that a purely combinatorial formula for
the K̃λ,µ(q, t) of the form (10.3.13) can be found. In this subsection we indicate how such a
formula can be obtained when µ has two columns.

By a final segment of a word we mean the last k letters of the word, for some k. We say a



36 J. Haglund

filling σ is a Yamanouchi filling if, in any final segment of read(σ), there are at least as many
i’s as i + 1’s, for all i ≥ 1. In [62] the following result is proved.

Theorem 10.6.5 For any partition µ with µ1 ≤ 2,

K̃λ,µ(q, t) =
∑

σ Yamanouchi

tmaj(σ, µ)qinv(σ, µ), (10.6.5)

where the sum is over all Yamanouchi fillings of µ.

Other combinatorial formulas for the two-column case are known, see [33, 98, 157, 158], al-
though (10.6.5) is perhaps the simplest. We also mention that Assaf & Garsia [9] have found a
recursive construction which produces an explicit basis for the Garsia–Haiman modules V(µ)
when µ has at most two columns or is a hook shape. The proof of Theorem 10.6.5 involves
a combinatorial construction which groups together fillings which have the same maj and inv
statistics. This is carried out with the aid of crystal graphs, which occur in the representation
theory of Lie algebras. We should mention that in (10.6.5), if we restrict the sum to those
fillings with a given descent set, we get the Schur decomposition for the corresponding LLT
polynomial.

If, in (10.6.5), we relax the condition that µ has at most two columns, then the equation
no longer holds. It is an open problem to find a way of modifying the concept of a Ya-
manouchi filling such that (10.6.5) is true more generally. A specific conjecture, when µ has
three columns, for the K̃λ,µ(q, t), of the special form (10.3.13), was given in [55], and recently
proved by J. Blasiak [18]. In fact, Blasiak’s result applies to any LLT product of three skew-
shapes, and is the most general result currently known about the combinatorics of LLT Schur
coefficients. It builds on joint work of Blasiak & Fomin [19].

10.7 Nonsymmetric Macdonald polynomials

As we wrote in §10.1, work by Macdonald [125] (further developed in [26, 143, 89, 82],
among others) and by Sahi [144] gave a construction of nonsymmetric (i.e., not Weyl group
invariant) polynomials, starting from affine root systems and yielding by symmetrization the
orthogonal polynomials associated with root systems as introduced by Macdonald [126] and
Koornwinder [92]. See Macdonald [127] and Chapter 9 of this volume for a general treatment
of these symmetric and nonsymmetric Macdonald–Koornwinder polynomials. In the GLn

case the nonsymmetric Macdonald polynomials Eα(X; q, t) form a basis for the polynomial
ring Q(q, t)[x1, . . . , xn], and are natural nonsymmetric analogues of the symmetric Macdonald
Pλ(X; q, t) of Theorem 10.3.1.

In this section we will focus on the combinatorial properties of the GLn case, where there
is a special structure which allows us to assume that α (generally in a weight lattice) is a
composition, i.e., α ∈ Nn. Given α ∈ Nn, let α′ denote the transpose diagram of α, consisting
of the squares α′ :=

{
(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ αi

}
. Furthermore let dg(α′) denote the

augmented transpose diagram obtained by adjoining the basement row of n squares {(i, 0)}ni=1
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below α′. Given s ∈ α′, we let leg(s) be the number of squares of α′ above s and in the same
column of s. Define Arm(s) to be the set of squares of dg(α′) which are either to the right and
in the same row as s, and also in a column not taller than the column containing s, or to the left
and in the row below the row containing s, and in a column strictly shorter than the column
containing s. Then set arm(s) := |Arm(s)|. For example, for α = (1, 0, 3, 2, 3, 0, 0, 0, 0), the
leg lengths of the squares of (1, 0, 3, 2, 3, 0, 0, 0, 0)′ are listed on the left in Figure 10.13 and
the arm lengths on the right. Note that if α is a partition µ, the leg and arm definitions agree
with those previously given for µ′.

Figure 10.13 The leg lengths (on the left) and the arm lengths (on the right) for (1, 0, 3, 2, 3, 0, 0, 0, 0)′.

Given two polynomials f (x1, . . . , xn; q, t) and g(x1, . . . , xn; q, t) whose coefficients depend
on q, t, define a scalar product

〈 f , g〉′q,t := CT f (x1, . . . , xn; q, t)g(1/x1, . . . , 1/xn; 1/q, 1/t)W(x1, . . . , xn; q, t),

W(x1, . . . , xn; q, t) :=
∏

1≤i< j≤n

(xi/x j; q)ν (qx j/xi; q)ν, t = qν,

Here CT means “take the constant term in”, and (z; q)ν := (z; q)∞/(zqν; q)∞ with (z; q)∞ :=∏∞
i=0(1 − zqi).
The Eα can be defined in two ways. One way, due to Macdonald [125], is to introduce a

certain partial order “<” on compositions, and then show that the Eα are the unique family of
polynomials which are triangular in the sense that any monomials xβ that occur in Eα must
satisfy β ≤ α, and also are orthogonal with respect to 〈 . , . 〉′q,t: 〈Eα, Eβ〉

′
q,t = 0 if α , β.

(For fixed q, t this can also be viewed as a biorthogonality for the two systems of polynomials
Eα(X; q, t) and Eβ(X; q−1, t−1) . ) The Pλ are also orthogonal with respect to 〈 . , . 〉′q,t. (The
above construction has an extension to general affine root systems, while it is not known
whether the orthogonality of the Pλ with respect to the combinatorially defined scalar product
in (10.3.1) has a version for other root systems.)

Another way, which is more closely related to the combinatorial formulas we discuss in
this section, is to use Cherednik’s intertwiner relations, which give recurrence relations which
uniquely define the Eα. In the GLn case, both Knop [89] and Sahi [142] independently found
a simplification in one of these two recurrence relations. The Knop–Sahi formula (which is
discussed in more detail in [65]) involves the following operators

π(α1, . . . , αn) := (αn + 1, α1, . . . , αn−1), Ψ f (x1, . . . , xn) := x1 f (x2, x3, . . . , xn, x1/q),

where f is any polynomial in Q(q, t)[x1, . . . , xn]. Also, let si(α) be the composition with αi

and αi+1 interchanged (if 1 ≤ i ≤ n − 1) and α1 and αn interchanged (if i = 0).



38 J. Haglund

Lemma 10.7.1 [65] The Eα for α ∈ Nn are uniquely characterized by the initial value
E0n = 1 together with the relations

Esi(α)(x1, . . . , xn; q, t) =

(
Ti +

1 − t
1 − ql(s)+1ta(s)

)
Eα(x1, . . . , xn; q, t) (10.7.1a)

(where i is such that αi > 0 and αi+1 = 0) and

Eπ(α)(x1, . . . , xn; q, t) = qαnΨEα(x1, . . . , xn; q, t). (10.7.1b)

In (10.7.1a) the Ti, 0 ≤ i ≤ n − 1 are the usual generators of the affine Hecke algebra, which
satisfy the quadratic relation

(Ti − t)(Ti + 1) = 0, (10.7.2)

together with the braid relations

TiTi+1Ti = Ti+1TiTi+1, TiT j = T jTi if |i − j| > 1,

where all indices are modulo n. The Ti act on monomials in the X variables by

Tixλ = txsi(λ) + (t − 1)
xλ − xsi(λ)

1 − xγi
, where xγi = xi/xi+1 for 1 ≤ i ≤ n − 1, and xγ0 = qxn/x1.

Proof If α1 > 0, then α = π(β) where β ∈ NN . By induction on the sum of the parts, we can
assume Eβ is already determined, and apply (10.7.1a). If α1 = 0 and α j > 0 for some j > 1,
we can reduce to the case α1 > 0 by repeated application of (10.7.1b). �

For α ∈ Nn, let rev(α) := (αn, αn−1, . . . , α1) be the composition obtained by reversing the
parts of α, and set

Êα(x1, . . . , xn; q, t) := Erev(α)(xn, . . . , x1; 1/q, 1/t). (10.7.3)

This modified version of the Eα is what one gets by specializing Cherednik’s [26] general
theory of nonsymmetric Macdonald polynomials to GLn root data (so the Êα is the Pα of
Definition 9.3.9 in Chapter 9). Formula (10.7.3) thus provides the bridge between the two
natural conventions on GLn nonsymmetric Macdonald polynomials.

Marshall [130], who made a special study of the Êα, showed among other things they satisfy
a version of Selberg’s integral.

Define the integral form nonsymmetric Macdonald polynomials Êα as

Êα(x1, . . . , xn; q, t) := Êα(x1, . . . , xn; q, t)
∏
s∈α′

(1 − qleg(s)+1tarm(s)+1).

Theorem 10.7.2 below describes a combinatorial formula for Êα(X; q, t) which, in short, is the
same as (10.6.3), using the extensions of the definitions of arm, leg, coinv, maj to composition
diagrams, and changing the basement to σ( j, 0) = j.

Given α ∈ Nn, a filling σ of α′ is an assignment of integers from the set {1, . . . , n} to the
squares of α′. As before, we let the reading word read(σ) be the word obtained by reading
across rows, left to right, top to bottom. The standardization of a filling σ is the filling whose
reading word is the standardization of read(σ).
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We say a square s ∈ α′ attacks all squares to its right in its row and all squares of dg(α′) to
its left in the row below. Call a filling nonattacking if there are no pairs of squares (s, u) with
s ∈ α′, s attacks u, and σ(s) = σ(u). Note that, since σ( j, 0) = j, in any nonattacking filling
with s of the form (k, 1), we must have σ(s) ≥ k. Figure 10.14 gives a nonattacking filling of
(1, 0, 3, 2, 3, 0, 0, 0, 0)′.

As before we let South(s) denote the square of dg(α′) immediately below s, and let maj(σ, α′)
denote the sum, over all squares s ∈ α′ satisfying σ(s) > σ(South(s)), of leg(s)+1. A triple of
α′ is three squares u, v,w with u ∈ α′, v ∈ Arm(u), and w = South(u). Note that v,w need not
be in α′, i.e., they could be in the basement. We determine the orientation of a triple by starting
at the smallest and going in a circular motion to the next-largest and then to the largest, where
if two entries of a triple have equal σ-values then the one that occurs earlier in the reading
word is viewed as being smaller. We say such a triple is a coinversion triple if either v is in
a column to the right of u, and u, v,w has a clockwise orientation, or v is in a column to the
left of u, and u, v,w has a counterclockwise orientation. Let coinv(σ, α′) denote the number
of coinversion triples of σ. For example, the filling in Figure 10.14 has coinversion triples{
{(3, 2), (3, 1), (4, 2)}, {(3, 2), (3, 1), (5, 2)}, {(3, 2), (3, 1), (1, 1)}, {(4, 2), (4, 1), (1, 1)},

{(5, 1), (5, 0), (1, 0)}, {(5, 1), (5, 0), (2, 0)}, {(5, 1), (5, 0), (4, 0)}
}
. (10.7.4)

Figure 10.14 A nonattacking filling of (1, 0, 3, 2, 3, 0, 0, 0, 0)′.

Theorem 10.7.2 [65] For α ∈ Nn,
∑

i αi ≤ n,

Êα(x1, . . . , xn; q, t) =
∑

nonattacking fillings σ of α′
σ( j,0)= j

xσqmaj(σ,α′)tcoinv(σ,α′)

×
∏
u∈α′

σ(u)=σ(South(u))

(1 − qleg(u)+1tarm(u)+1)
∏
u∈α′

σ(u),σ(South(u))

(1 − t), (10.7.5a)

where as usual xσ =
∏

s∈α′ xσ(s). Equivalently,

Êα(x1, . . . , xn; q, t) =
∑

nonattacking fillings σ of α′
σ( j,0)= j

xσqmaj(σ,α′)tcoinv(σ,α′)

×
∏
u∈α′

σ(u),σ(South(u))

1 − t
1 − qleg(u)+1tarm(u)+1 . (10.7.5b)
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Remark 10.7.3 We can obtain corresponding versions of (10.7.5a) and (10.7.5b) involving
the Eα(X; q, t) and its integral form

Eα(x1, . . . , xn; q, t) := Eα(x1, . . . , xn; q, t)
∏

s∈rev(α′)

(1 − qleg(s)+1tarm(s)+1)

by simply reversing the basement and reversing the parts of α:

Eα(x1, . . . , xn; q, t) =
∑

nonattacking fillings σ of (αn, . . . , α1)′
σ( j,0)=n− j+1

xσqmaj(σ,rev(α)′)tcoinv(σ,rev(α)′)

×
∏

u∈rev(α)′
σ(u)=σ(South(u))

(1 − qleg(u)+1tarm(u)+1)
∏

u∈rev(α)′
σ(u),σ(South(u))

(1 − t), (10.7.6a)

Eα(x1, . . . , xn; q, t) =
∑

nonattacking fillings σ of (αn, . . . , α1)′
σ( j,0)=n− j+1

xσqmaj(σ,rev(α)′)tcoinv(σ,rev(α)′)

×
∏

u∈rev(α)′
σ(u),σ(South(u))

(1 − t)
(1 − qleg(u)+1tarm(u)+1)

. (10.7.6b)

Example 10.7.4 By (10.7.4) the nonattacking filling in Figure 10.14 has coinv = 7. There
are descents at squares (1, 1), (3, 2), and (5, 1), with maj-values 1, 2, and 3, respectively. The
squares (3, 1), (4, 1) and (5, 3) satisfy the condition σ(u) = σ(South(u)) and contribute factors
(1−q3t5), (1−q2t3) and (1−qt2), respectively. Hence the total weight associated to this filling
in (10.7.5a) is x1x2x2

3x2
4x2

5x7q6t7(1 − q3t5)(1 − q2t3)(1 − qt2)(1 − t)6.

Remark 10.7.5 Let Cα(x1, . . . , xn; q, t) denote the right-hand side of (10.7.6b). The fact
that this equals Eα(x1, . . . , xn; q, t) is proved in [65] by showing it satisfies both (10.7.1a) and
(10.7.1b). The relation (10.7.1a) actually holds term-by-term, which is proved by a simple
bijective argument. To show Cα also satisfies (10.7.1a) is harder, and utilizes the following
result.

Lemma 10.7.6 For any G1,G2 ∈ Q(q, t)X, and 0 < i < n, the following conditions are
equivalent:

(i) G2 = TiG1;
(ii) G1 + G2 and txi+1G1 + xiG2 are symmetric in xi, xi+1.

Lemma 10.7.6 allows one to reduce (10.7.1a) to a number of technical lemmas involving
super fillings and LLT polynomials.

Remark 10.7.7 The polynomials Êα(x1, . . . , xn; 0, 0) = Êα(x1, . . . , xn; 0, 0) are known to
equal the “standard bases” of Lascoux & Schützenberger [107], which arise in the study of
Schubert varieties. These polynomials are now referred to as Demazure atoms [67, 132], since
they decompose Demazure characters. Setting q = t = 0 in (10.7.5a) gives a new combina-
torial formula for the Demazure atom Aα(x1, . . . , xn), namely the sum of xσ over all fill-
ings σ of dg(α′) with no descents and no coinversion triples. Similarly, the special value
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Eα(x1, . . . , xn; 0, 0) is known to equal the Demazure character, which by (10.7.6b) can be ex-
pressed as the sum of xσ over all fillings σ of dg((αn, αn−1, . . . , α1)′) with no descents, no
coinversion triples, and with basement σ( j, 0) = n − j + 1.

For any α ∈ Nn, let α+ denote the partition obtained by rearranging the parts of α into
nonincreasing order. It is well-known that the Pλ(x1, . . . , xn; q, t) can be expressed as a linear
combination of those Eα for which α+ = λ. In terms of the Êα, this identity takes the following
form [130]

Pλ(Xn; q, t) =
∏
s∈λ′

(1 − qleg(s)+1tarm(s))
∑

α:α+=λ

Êα(x1, . . . , xn; q, t)∏
s∈α′ (1 − qleg(s)+1tarm(s))

. (10.7.7)

If we set q = t = 0 in (10.7.7), then by Remark 10.3.2 we have the identity sλ(Xn) =∑
α;α+=λ Aα(x1, . . . , xn). Mason has proved this identity bijectively by developing a gener-

alization of the RSK algorithm [131], [132]. Haglund et al. [66, 67] have used aspects of this
generalized RSK algorithm to show that the product of a Schur function and a Demazure atom
(character), when expanded in terms of Demazure atoms (characters), has a combinatorial in-
terpretation, which refines the Littlewood–Richardson rule.

Remark 10.7.8 Let Êσ
γ (x1, . . . , xn; q, t) denote the polynomial obtained by starting with

the combinatorial formula (10.7.5a) involving sums over nonattacking fillings, replacing the
basement (1, 2, . . . , n) by (σ1, σ2, . . . , σn), and keeping other aspects of the formula the same.
Then a result first observed by Haiman, studied by Ferreira [32], and later proved by Alexan-
dersson [3] says that if i + 1 occurs to the left of i in the basement (σ1, σ2, . . . , σn), then

TiÊσ
γ (x1, . . . , xn; q, t) = tAÊσ′

γ (x1, . . . , xn; q, t). (10.7.8)

Here A equals one if the height of the column of d̂g(γ) above i + 1 in the basement is greater
than or equal to the height of the column above i in the basement, and equals zero otherwise.
Also, σ′ is the permutation obtained by interchanging i and i + 1 in σ. Note the quadratic
relation (10.7.2) implies Ti(Ti + 1 − t) = t, or T−1

i = (Ti + 1 − t)/t. By iterating (10.7.8) one
can express Êσ

γ as a certain simple power of t (depending on γ and σ) times a sequence of Ti

applied to Ên···21
γ , or equivalently as a certain simple power of t times T−1

σ applied to Êγ, where
T−1
σ is the product of the T−1

i occurring in any reduced expression for σ. Now the formula
mentioned above for Ên···21

γ is the same as the formula in [65] for Eγn,...,γ1 , which shows one
can translate between the Eγ and the Êγ using Hecke operators. We should mention that the
Hecke algebra and the Ti have played a central role in the subject of nonsymmetric Macdonald
polynomials from the outset, as in the work of Macdonald [125] and Cherednik [26]. Also,
the special case q = t = 0 of the Êσ

γ has been studied in [69, 119, 138].

Remark 10.7.9 Let µ be a partition, and α ∈ Nn with (α+)′ = µ, that is, a diagram obtained
by permuting the columns of µ. If we let σ( j, 0) = ∞, the two involutions from the proof of
Theorem 10.5.3 hold for super fillings of α′. It follows that formula (10.5.2) for H̃µ(X; q, t),
and formula (10.6.3) for Jµ(X; q, t) all hold if, instead of summing over fillings of µ, we sum
over fillings of α′, using the definitions of arm, leg, etc. given earlier in this section.
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Remark 10.7.10 Knop & Sahi [91] obtained a combinatorial formula for the nonsymmetric
Jack polynomial, which is a limiting case of (10.7.5a) in the same way that (10.6.4) is a
limiting case of (10.6.3). In fact, it was contrasting their formula for the nonsymmetric Jack
polynomials with (10.6.3) which led to (10.7.5a).

10.8 The genesis of the q, t-Catalan statistics

In this section we outline the empirical steps which led the author to the discovery of the statis-
tics on Dyck paths for the q, t-Catalan Cn(q, t) [54]. Recall that Cn(q, t), introduced by Garsia
and Haiman in 1993, was originally defined as the sum of rational functions (10.3.20). Garsia
and Haiman proved that Cn(q, 1) equals the sum of qarea(π) over all π ∈ L+

n,n, and posed the
problem of finding a statistic tstat to match with area such that Cn(q, t) =

∑
π∈L+

n,n
qarea(π)ttstat(π).

By 1998 this problem and the related question of finding of finding statistics to generate
Hilb(DHn; q, t) had become fairly well-known. At the time the author was a postdoc at MIT,
and both R. Stanley and S. Billey suggested he would work on the problem. The author tried
several different approaches without success. A year later though, the author spent a year as a
postdoc at UC San Diego, and decided to try once more. Since Cn(q, t) = Cn(t, q), tstat had to
have the same distribution over Dyck paths as area, but none of the other known statistics on
Dyck paths equidistributed with area worked. The method the author was using was to study
tables of Cn(q, t), and to try inventing a tstat to pair with area which would match those tables.

After several attempts again met with failure, the author decided to try and look for recur-
rences amongst the tables, in an effort to find rules which would force certain decisions. Note
that all paths in L+

n,n which begin with an N and then an E step are clearly in bijection with
paths in L+

n−1,n−1, and the author noticed that a copy of tn−1Cn−1(q, t) seemed to be contained
in Cn(q, t) in the sense that Cn(q, t) − tn−1Cn−1(q, t) ∈ N[q, t].

The author later noticed that copies of tn−kq(k
2)Cn−k(q, t) were contained in Cn(q, t) for all

1 ≤ k ≤ n, and moreover Cn(q, t)−
∑n

k=1 tn−kq(k
2)Cn−k,n−k(q, t) ∈ N[q, t]. This suggested that for

any path which begins with k N steps followed by k E steps, tstat equals n − k plus the value
of tstat on the remaining portion of the path, viewed as an element of L+

n−k,n−k. In particular, if
to any composition α of n into positive parts we associate the “balanced” path π(α) consisting
of α1 N steps followed by α1 E steps, then α2 N steps followed by α2 E steps, etc., then
tstat(π(α)) = n − α1 + n − (α1 + α2) + . . . . After a month or two of more trial and error, the
author finally realized that you can associate a balanced path, called the bounce path, to any
Dyck path π, via the algorithm outlined below, and that tstat(π) depends only on the bounce
path.

To form the bounce path bounce(π), think of shooting a billiard ball straight north from
(0, 0). Once the billiard ball hits the beginning of an E step of π it ricochets straight east until
it hits the main diagonal x = y at a point say (α1, α1). It then ricochets straight north and
repeats the previous procedure, travelling north until it hits the beginning of an E step, then
going east until it hits the diagonal, where it again ricochets north, and so on, until it reaches
(n, n). For an example, see Figure 10.15. If the path the billiard ball takes is the balanced path
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which touches the diagonal at points (α1, α1), (α1 + α2, α1 + α2), etc., then define the bounce
statistic bounce(π) = (n−α1) + (n−α1−α2) + . . . . A short Maple program verified for n ≤ 12
the conjecture that

Cn(q, t) =
∑
π∈L+

n,n

qarea(π)tbounce(π). (10.8.1)

Figure 10.15 The bounce path (dotted line) for a Dyck path.

While the author and Garsia were trying to prove (10.8.1), Haiman independently found an
alternate form of the conjecture involving the statistics area and dinv, as described in §10.4.1.
Upon comparing the two conjectures Haiman and the author quickly realized they are equiv-
alent, which can be proved bijectively by using what we call the ζ map of a Dyck path. Given
π ∈ L+

n,n, let R(π) be the parking function for π whose reading word is the reverse of the iden-
tity permutation. Construct another path ζ(π) by first placing the numbers 1, 2, . . . , n along the
diagonal of an empty grid of squares, with i in square (i, i). Then let ζ(π) be the unique path
with the following property: For each pair (i, j) satisfying 1 ≤ i < j ≤ n, the square of the
grid in the column containing i and the row containing j is below the path ζ(π) if and only if,
in R(π), the rows containing the numbers i, j contribute an inversion to dinv(R(π)). See Figure
10.16. We leave it as an exercise for the interested reader to verify that dinv(π) = area(ζ(π))
and area(π) = bounce(ζ(π)). It is still an open problem to prove Cn(q, t) = Cn(t, q) bijec-
tively, perhaps by finding a map on Dyck paths which interchanges the statistics (dinv, area),
or interchanges (area, bounce). See [110] for recent work on this problem.

The bounce path arose independently in work of Andrews et al. [4], who were calculating
the minimal power you needed to raise an ad-nilpotent b-ideal in the Lie algebra sl(n) to get 0.
They showed that this minimal power equals the number of bounce steps of the bounce path of
a certain Dyck path associated to the ideal. In a sequel to this paper the last three authors of [4]
obtained in [93] versions of their results for simple Lie algebras of other type, in particular for
type Bn. Attempts by C. Stump, the author, and others to link the bounce path of type Bn in
this paper to a Bn-version of Cn(q, t) defined in unpublished work of Haiman (which uses the
Hilbert scheme) have so far been unsuccessful.
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Figure 10.16 On the left, a Dyck path π, and on the right, ζ(π), together with its bounce path.

10.9 Other directions

10.9.1 The formula of Ram and Yip

In view of the combinatorial formulas (10.6.3) and (10.7.6b) for the GLn (integral form) Mac-
donald symmetric and nonsymmetric polynomials, a natural question to ask is whether such
results exist for versions associated to other affine root systems. Progress in this direction has
been made by Ram and Yip [139], who derive a closed form expression for the Eα for arbi-
trary affine root systems. Their formula is expressed as a sum over alcove walks, which grew
out of work of Gaussent and Littelmann [50, 116, 117], and were further developed by Lenart
& Postnikov [113, 114]. They also have a corresponding formula for the symmetric Pµ for ar-
bitrary type. When restricted to the GLn case, their formula for Pµ in general has more terms
than the Haglund–Haiman–Loehr formula (10.6.3), but in this case Lenart [111] has found
a way of grouping terms in the Ram–Yip formula together to get a more compact formula.
Rather amazingly, Lenart’s more compact formula turns out to be the same as the formula for
Pµ obtained as sketched in Remark 10.7.9, with α the reverse of µ. Yip [156] used the Ram–
Yip formula to obtain a q, t-Littlewood–Richardson rule (for arbitrary type), which expands a
product of a monomial and an Eα in terms of the Eα. The coefficients in this expansion are
sums, over alcove walks, of rational functions in q, t. As corollaries she obtains expressions
for the product of two Eα, or the product of a symmetric Pλ and an Eα, for arbitrary type.

Recall that Lascoux and Schützenberger’s charge statistic arises when expanding the Hall–
Littlewood polynomials Pµ(X; 0, t) in terms of the sλ[X(1−t)]. It is also known that Pµ(X; q, 0)
=

∑
λ Kλ′,µ′ (q)sλ(X). Ion [82] has shown that for general type, the expansion of Pµ(X; q, 0) in

terms of Weyl characters has nonnegative coefficients (in type A, a Weyl character is a Schur
function). By studying the t = 0 case of the Ram-Yip formula, Lenart [112] has developed a
version of charge for type C. Lenart and Schilling [115] have proved that this type C charge
corresponds with the energy function on tensor products of Kirillov-Reshetikhin crystals.
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10.9.2 The probabilistic interpretation of Diaconis and Ram

Let λ be a partition of k. Diaconis & Ram [30] introduced a Markov chain on partitions of
k whose eigenfunctions are the coefficients of the (GLn) Macdonald polynomial Pλ(Xn; q, t),
when expanded in terms of the power-sum basis {pµ(Xn)}. They showed that the stationary
distribution of their Markov chain is a new two-parameter family of measures on partitions,
which includes the uniform distribution on permutations and the Ewens sampling formula as
special cases. By using properties of Macdonald polynomials they obtained a sharp analysis
of the rate of convergence of the Markov chain.

10.9.3 k-Schur functions

For any positive integer k, Lascoux, Lapointe & Morse [105] introduced a family of symmetric
functions which depend on a parameter t and reduce to Schur functions when k = ∞. These
symmetric functions form a basis for a certain subspace of Λ. During the period 2001− 2015,
several other conjecturally equivalent definitions of this intriguing family were introduced;
they are now commonly called k-Schur functions as in [96], denoted s(k)

λ (X; t) (λ ∈ Λ, λ1 ≤ k).
This and other related conjectures have sparked a large amount of research over the last twenty
years; see for example [95, 97, 99].

In a landmark 2019 paper [20], Blasiak, Morse, Pun and Summers proved many of the
conjectures about k-Schur functions, by studying a broader family of functions, Catalan func-
tions, introduced by Chen and Haiman [25] in association with their study of k-Schur func-
tions. One conjecture that is still open, the main conjecture in [105], is that when the modified
Macdonald polynomial H̃µ(X; q, t) is expanded into the k-Schur basis with parameter q, i.e.,
{s(k)
λ (X; q)}, where k ≥ µ′1, the coefficients are in N[q, t].
Let the bandwidth of a LLT polynomial be the number of dotted diagonal lines which inter-

sect the diagonal of some square in one of the skew shapes in the LLT tuple. For example, for
the LLT polynomial in Figure 10.6, the bandwidth is 3, and for the tuple on the right in Figure
10.7, it is 4. It has been suggested that when expanding an LLT polynomial of bandwidth k
into the k-Schur function basis {s(k)

λ (X; q)}, the coefficients are in N[q]. By (10.5.6), this refines
the conjecture from [105] discussed in the previous paragraph.

k-Schur functions also have other remarkable properties. For example, T. Lam [94] proved
a conjecture of M. Shimozono, which says that when t = 1 the k-Schur form the Schubert
basis for the homology of the loop Grassmannian, a conjecture which was based in part on
results in [100].

10.10 Recent developments

The work of Carlsson and Mellit

In August 2015 Carlsson & Mellit posted a preprint on the arXiv which proved the Com-
positional Shuffle Conjecture of Remark 10.4.8, and which has appeared now in [24]. As
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corollaries they obtain the first proof of Conjecture 10.4.1 (the combinatorial formula for
Hilb(DHn; q, t)) and more generally the first proof of the Shuffle Conjecture.

To prove the Compositional Shuffle Conjecture they introduce a new algebraic object, the
double Dyck path algebra Aq,t, which is closely related to the double affine Hecke algebra.
(See [155] for an detailed description of how Aq,t arises as a stable limit of the family of GLn

double affine Hecke algebras). A crucial role in Aq,t is played new operators d− and d+, which
have combinatorial interpretations involving weighted Dyck paths and parking functions.

There is a wonderful action of Aq,t on elements of Λ with coefficients in Q(q, t)[y1, . . . , yk].
The Ti operators act on monomials in the yi (as in (10.7.8) with xλ replaced by yλ), while
the action of d(k)

+ and d(k)
− is defined using plethysm. The operators d+ and d− are constructed

such that, if you start at the end of a Dyck path π and create a sequence of operators L(π) by
tracing the path backward, prepending d+ to L(π) for E steps and d− to L(π) for N steps, then
L(π) operating on the constant 1 gives a certain LLT product of single cells. Moreover, if for
each EN corner of π you replace the corresponding d−d+ contribution to L(π) by a factor of
(d−d+ − d+d−)/(q − 1), then the resulting sequence M(π), acting on the constant 1, will yield
Fζ−1(π)(X; q), where F and ζ are as in (10.4.3) and Figure 10.16.

Say we have a path π which begins with k N steps followed by an E step. Then M(π) will
begin with k d− terms. Letting M′(π) denote M(π) with these k d− terms removed, then M′(π)
applied to 1 will be a sum of symmetric functions in X with coefficients in Q(q, t)[y1, . . . , yk].
Carlsson & Mellit show that certain sums of the M′(π)1, corresponding to elements π for
which ζ−1(π) has touch points (a1, a1), (a1 + a2, a1 + a2), . . . , (n, n), satisfy a nice recurrence.
They also show that the operator ∇ can be expressed using elements of Aq,t, and that they
can then, by using their commutation relations, prove the Compositional Shuffle Conjecture
in two lines.

The Dyck path algebra method has already found other substantial applications. In a sequel
to the Carlsson–Mellit paper, Mellit [133] proves the Compositional Rational Shuffle Con-
jecture from [16], which contains the Rational Shuffle Conjecture and Compositional Shuffle
Conjecture, and hence all the conjectures from §10.4, as special cases. His proof starts by
assuming the properties of the double Dyck path algebra developed in [24], then introduces
some new ideas. In particular he relates actions of toric braids with parking functions, and
exploits the known fact that the DAHAn can be viewed as a quotient of the surface braid
group of a torus. One question which the work of Carlsson and Mellit hasn’t as of yet shed
any light on is the problem of finding a combinatorial expression for the Schur coefficients of
the Fπ(X; q, t) of (10.4.3).

Another conjecture which has recently been proved by the Dyck path algebra method is
the Delta Conjecture of Haglund, Remmel & Wilson [70]. For f ∈ Λ, let ∆ f be the linear
operator defined on the H̃µ basis of modified Macdonald polynomials via ∆ f H̃µ(X; q, t) =

f [Bµ(q, t)]H̃µ(X; q, t), with Bµ(q, t) as in (10.3.4). Furthermore let ∆′f H̃µ(X; q, t) = f [Bµ(q, t)−
1]H̃µ(X; q, t). The Delta Conjecture gives an elegant combinatorial formula, in terms of park-
ing functions, for ∆′ek

en, for any 0 ≤ k ≤ n − 1. For k = n − 1 it reduces to the Shuffle
Conjecture. (There are actually two different formulas for the combinatorial side of the Delta
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Conjecture, the rise version and the valley version. Both these versions are fairly similar, but it
is still an open problem to show they are equivalent.) In [29], D’Adderio, Iraci and Wyngaerd
introduce a new family of useful operators called Theta operators, and showcase these in a
compositional refinement of the Delta Conjecture. Shortly after this D’Adderio and Mellit
[28] prove this Compositional Delta Conjecture, which implies the rise version of the Delta
Conjecture, by embedding the Theta operators in Aq,t.

In another major development, Blasiak, Haiman, Morse, Pun and Seelinger [21] have proved
the Extended Delta Conjecture, which generalizes the rise version of the Delta Conjecture in
a different way, by giving a combinatorial interpretation for ∆hm∆′ek

en, for any 0 ≤ k, l. Their
proof uses a completely new method involving the Schiffman algebra and a new view of LLT
polynomials as the polynomial part of certain Laurent series. This preprint is the second in a
series; in the first they give another proof of the Rational Shuffle Conjecture (in fact a gener-
alization of it involving lines of irrational slope). They have also announced that they can use
the method to prove a conjecture of Loehr and Warrington going back to 2008 [121], which
gives a combinatorial interpretation, in terms of nested Dyck paths, for ∇ applied to any Schur
function.

There are a number of intriguing results and conjectures linking the Delta Conjecture to
coinvariant algebras. Haglund, Rhoades & Shimozono [71] introduced a quotient ring whose
bigraded character equals the symmetric function described by the combinatorial side of the
Delta Conjecture when t = 0. The combinatorics of this t = 0 case is controlled by ordered
set partitions. Moreover, Zabrocki [159] has conjectured that the symmetric function

n−1∑
k=0

zn−k∆′ek
en (10.10.1)

gives the tri-graded Frobenius characteristic of the Super Diagonal Coinvariant Ring SDRn,
defined as

SDRn =
C[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]

C[x1, . . . , xn, y1, . . . , yn, θ1, . . . , θn]S n,+
, (10.10.2)

where the θk are so-called fermionic variables (i.e. θiθ j = −θ jθi for all 1 ≤ i, j ≤ n) which
commute with the ordinary bosonic commuting x and y variables. The denominator is all
functions of positive homogeneous degree which are fixed by the symmetric group under the
diagonal action (which permutes the x, y, θ variables in the exact same way). The z-parameter
in 10.10.1 corresponds to the degree in the θ variables, and the q, t the degree in the x, y
variables as usual. Zabrocki’s Conjecture seems to be very difficult, and even the case t = 0
of it is still open.

In another direction Sergel [147] has proved the Square Paths Conjecture of Loehr and War-
rington [120], which gives a combinatorial interpretation for ∇pn, by showing it follows from
the Compositional Shuffle Conjecture. Her proof uses clever combinatorial manipulations of
parking functions. There is also a family of conjectures connected to the combinatorics of the
character of diagonal harmonics in several sets of variables under the diagonal action of Sn;
see [11, 12, 13].



48 J. Haglund

Acknowledgements The author would like to thank Francois Bergeron, Tom Koornwinder,
Nick Loehr, and Jasper Stokman for many comments and suggestions which led to improve-
ments in this chapter. The author’s work on this chapter was supported by NSF grants DMS-
0901467, DMS-1200296, and DMS-1600670.

References
[1] Aganagic, M., and Shakirov, S. 2012. Refined Chern–Simons theory and knot homol-

ogy. Pages 3–31 of: String-Math 2011. Proc. Sympos. Pure Math., vol. 85. Amer.
Math. Soc.

[2] Aganagic, M., and Shakirov, S. 2015. Knot homology and refined Chern–Simons in-
dex. Comm. Math. Phys., 333, 187–228.

[3] Alexandersson, Per. 2019. Non-symmetric Macdonald polynomials and Demazure-
Lusztig operators. Sém. Lothar. Combin., 76, Art. B76d, 27 pp.

[4] Andrews, G. E., Krattenthaler, C., Orsina, L., and Papi, P. 2002. ad-Nilpotent b-ideals
in sl(n) having a fixed class of nilpotence: combinatorics and enumeration. Trans. Amer.
Math. Soc., 354, 3835–3853.

[5] Armstrong, D. 2013. Hyperplane arrangements and diagonal harmonics. J. Comb., 4,
157–190.

[6] Armstrong, D., and Rhoades, B. 2012. The Shi arrangement and the Ish arrangement.
Trans. Amer. Math. Soc., 364, 1509–1528.

[7] Artin, E. 1944. Galois Theory. Second edn. Notre Dame Mathematical Lectures, no. 2.
University of Notre Dame. Reprinted, 1976.

[8] Askey, R. 1980. Some basic hypergeometric extensions of integrals of Selberg and
Andrews. SIAM J. Math. Anal., 11, 938–951.

[9] Assaf, S., and Garsia, A. 2009. A kicking basis for the two column Garsia–Haiman
modules. Pages 103–114 of: 21st International Conference on Formal Power Se-
ries and Algebraic Combinatorics (FPSAC 2009). DMTCS Proc., Vol. AK. Assoc.
DMTCS, Nancy.

[10] Bergeron, F. 1996. Formularium. Unpublished notes.
[11] Bergeron, F. 2009. Algebraic combinatorics and coinvariant spaces. CMS Treatises in

Mathematics. Canad. Math. Soc.
[12] Bergeron, F. 2012. Combinatorics of r-Dyck paths, r-parking functions, and the r-

Tamari lattices. arXiv:1202.6269.
[13] Bergeron, F. 2013. Multivariate diagonal coinvariant spaces for complex reflection

groups. Adv. Math., 239, 97–108.
[14] Bergeron, F., and Garsia, A. M. 1999. Science fiction and Macdonald’s polynomials.

Pages 1–52 of: Algebraic methods and q-special functions. CRM Proc. Lecture Notes,
vol. 22. Amer. Math. Soc.

[15] Bergeron, F., Garsia, A.M., Haiman, M., and Tesler, G. 1999. Identities and positiv-
ity conjectures for some remarkable operators in the theory of symmetric functions.
Methods Appl. Anal., 6, 363–420.

[16] Bergeron, F., Garsia, A., Sergel Leven, E., and Xin, G. 2016a. Compositional (km, kn)-
shuffle conjectures. Int. Math. Res. Not., 4229–4270.

[17] Bergeron, F., Garsia, A., Sergel Leven, E, and Xin, G. 2016b. Some remarkable new
plethystic operators in the theory of Macdonald polynomials. J. Comb., 7, 671–714.

[18] Blasiak, J. 2016. Haglund’s conjecture on 3-column Macdonald polynomials. Math. Z.,
283, 601–628.



Ch. 10, Combinatorial aspects 49

[19] Blasiak, J., and Fomin, S. 2017. Noncommutative Schur functions, switchboards, and
Schur positivity. Selecta Math. (N.S.), 23, 727–766.

[20] Blasiak, J., Morse, J., Pun, A., and Summers, D. 2019. Catalan functions and k-Schur
positivity. J. Amer. Math. Soc., 32, 921–963.

[21] Blasiak, J., Haiman, M., Morse, J., Pun, A., and Seelinger, G. H. 2021. A proof of the
Extended Delta Conjecture. arXiv:2102.08815.

[22] Burban, I., and Schiffmann, O. 2012. On the Hall algebra of an elliptic curve, I. Duke
Math. J., 161, 1171–1231.

[23] Butler, L. M. 1994. Subgroup lattices and symmetric functions. Mem. Amer. Math.
Soc., 112, no. 539.

[24] Carlsson, E., and Mellit, A. 2018. A proof of the shuffle conjecture. J. Amer. Math.
Soc., 31, 661–697.

[25] Chen, L.-C. 2010. Skew-linked partitions and a representation-theoretic model for
k-Schur. Ph.D. thesis, Univ. of California at Berkeley.

[26] Cherednik, I. 1995. Nonsymmetric Macdonald polynomials. Int. Math. Res. Not.,
483–515.

[27] Cherednik, I. 2013. Jones polynomials of torus knots via DAHA. Int. Math. Res. Not.,
5366–5425.

[28] D’Adderio, M., and Mellit, A. 2020. A proof of the compositional Delta conjecture.
arXiv:2011.11467.

[29] D’Adderio, M., Iraci, A., and Vanden Wyngaerd, A. 2021. Theta operators, refined
delta conjectures, and coinvariants. Adv. Math., 376, 107447, 59 pp.

[30] Diaconis, P., and Ram, A. 2012. A probabilistic interpretation of the Macdonald poly-
nomials. Ann. Prob., 40, 1861–1896.

[31] Dunfield, N. M., Gukov, S., and Rasmussen, J. 2006. The superpolynomial for knot
homologies. Experiment. Math., 15, 129–159.

[32] Ferreira, J. P. 2011. Row-strict quasisymmetric Schur functions, characterizations
of Demazure atoms, and permuted basement nonsymmetric Macdonald polynomials.
Ph.D. thesis, Univ. of California at Davis.

[33] Fishel, S. 1995. Statistics for special q, t-Kostka polynomials. Proc. Amer. Math. Soc.,
123, 2961–2969.

[34] Foata, D. 1968. On the Netto inversion number of a sequence. Proc. Amer. Math. Soc.,
19, 236–240.

[35] Forrester, P. J., and Warnaar, S. O. 2008. The importance of the Selberg integral. Bull.
Amer. Math. Soc. (N.S.), 45, 489–534.

[36] Foulkes, H. O. 1974. A survey of some combinatorial aspects of symmetric functions.
Pages 79–92 of: Permutations. Gauthier-Villars.

[37] Garsia, A., and Haglund, J. 2015. A polynomial expression for the character of diagonal
harmonics. Ann. Comb., 19, 693–703.

[38] Garsia, A., Xin, G., and Zabrocki, M. 2012. Hall-Littlewood operators in the theory of
parking functions and diagonal harmonics. Int. Math. Res. Not., 1264–1299.

[39] Garsia, A., Sergel Leven, E., Wallach, N., and Xin, G. 2017. A new plethystic sym-
metric function operator and the rational compositional shuffle conjecture at t = 1/q.
J. Combin. Theory Ser. A, 145, 57–100.

[40] Garsia, A. M., and Haglund, J. 2001. A positivity result in the theory of Macdonald
polynomials. Proc. Nat. Acad. Sci. U.S.A., 98, 4313–4316.

[41] Garsia, A. M., and Haglund, J. 2002. A proof of the q, t-Catalan positivity conjecture.
Discrete Math., 256, 677–717.



50 J. Haglund

[42] Garsia, A. M., and Haiman, M. 1993. A graded representation model for Macdonald
polynomials. Proc. Nat. Acad. Sci. U.S.A., 90, 3607–3610.

[43] Garsia, A. M., and Haiman, M. 1996a. A remarkable q, t-Catalan sequence and q-
Lagrange inversion. J. Algebraic Combin., 5, 191–244.

[44] Garsia, A. M., and Haiman, M. 1996b. Some natural bigraded S n-modules and q, t-
Kostka coefficients. Electron. J. Combin., 3, Paper 24, 60 pp.

[45] Garsia, A. M., and Procesi, C. 1992. On certain graded S n-modules and the q-Kostka
polynomials. Adv. Math., 94, 82–138.

[46] Garsia, A. M., and Remmel, J. 1998. Plethystic formulas and positivity for q, t-Kostka
coefficients. Pages 245–262 of: Mathematical essays in honor of Gian-Carlo Rota.
Progr. Math., vol. 161. Birkhäuser.
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