DIRECTIONS: Part A has 4 shorter problems (5 points each) while Part B has 6 traditional problems (10 points each). To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3 ×5 with notes on both sides.

PART A: Four shorter Problems, 5 points each.

A-1. Determine the image of the function \(f(x) := \frac{2x^2}{1 + x^2} \).

A-2. If \(a \) and \(b \) are rational numbers, consider the set \(S \) of real numbers of the form \(a + b\sqrt{7} \). Show that the elements in \(S \) have multiplicative inverses in \(S \). [This is the key step in showing that \(S \) is a field.]

A-3. Determine if the set \(S = \{ x \in \mathbb{R} : 4x^2 > x^3 + 3x \} \) is bounded above and/or below, and if so, find \(\inf(S) \) and \(\sup(S) \) – if they exist.

A-4. Let \(f, g : \mathbb{R} \to \mathbb{R} \) be bounded functions such that \(f(x) \leq g(x) \) for all \(x \). Let \(F \) denote the image of \(f \) and \(G \) the image of \(g \). Give an example (a picture) of pairs of such functions with \(\sup(F) > \inf(G) \).
Part B: Six traditional problems, 10 points each.

B-1. Let n be a positive integer. For any integers a, b we say that a equals $b \mod n$ if a and b have the same remainders when divided by n (equivalently, if $b - a$ is divisible by n). We write: $a \equiv b \pmod{n}$. So modulo n the possible remainders are $0, 1, 2, \ldots, (n - 1)$ and every integer is equivalent to one of these.

If $a \equiv r \pmod{n}$ and $b \equiv s \pmod{n}$, show that $ab \equiv rs \pmod{n}$.

As a special case, since $3^4 \equiv 1 \pmod{5}$, then $3^8 \equiv? \pmod{5}$ and $3^9 \equiv? \pmod{5}$.

B-2. If $a_1 = 1$ and $a_{n+1} = \sqrt{3a_n + 4}$ for $n \geq 1$, show that $a_n < 4$ for all $n \geq 1$.
B-3. Let c be a complex number with $|c| < 1$. Show that $2nc^n \to 0$.

B-4. For each condition below, give an example of an unbounded sequence such that $a_{n+1} - a_n > 0$ for all $n \in \mathbb{N}$ and the specified condition holds.

a) $\lim (a_{n+1} - a_n) = L$, where $L > 0$.

b) $\lim (a_{n+1} - a_n) = 0$.
B-5. Let a_n and b_n be sequences of real numbers. If $a_n \to A$ and $b_n \to B$, show that a_nb_n converges to AB.

B-6. Let b_n be a sequence of real numbers with the properties $b_n > 0$ and $b_n \to B$. Show that $B \geq 0$.

Also, give an example where $B = 0$.