The problem numbers refer to the D’Angelo-West text.

1. [#16.1] For \(x \neq 0 \) compute \(\lim_{h \to 0} \frac{1}{h} \left(\frac{1}{(x+h)^2} - \frac{1}{x^2} \right) \).

 Solution: Let \(f(x) = \frac{1}{x^2} \). Then
 \[
 \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{(x+h)^2} - \frac{1}{x^2} \right) = f'(x) = -\frac{2}{x^3}.
 \]

 Of course you can also compute the limit directly, but recognizing the limit as a derivative was my thought.

2. [#16.11] Use the definition of the derivative as the limit of a difference quotient to derive the product rule for differentiating \(f(x)g(x) \). [Suggestion: Add and subtract an appropriate quantity in the numerator.]

 Solution:

 \[
 \lim_{h \to 0} f(x+h)g(x+h) - f(x)g(x) \hfill \\
 = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x+h)g(x)}{h} + \frac{f(x+h)g(x) - f(x)g(x)}{h} \hfill \\
 = \lim_{h \to 0} f(x+h) \left(\frac{g(x+h) - g(x)}{h} \right) + \frac{f(x+h) - f(x)}{h} g(x) \hfill \\
 = \lim_{h \to 0} f(x+h) \left(\frac{g(x+h) - g(x)}{h} \right) + \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \lim_{h \to 0} g(x) \hfill \\
 = f(x)g'(x) + f'(x)g(x).
 \]

3. Use the definition of the derivative as the limit of a difference quotient to derive the formula for the derivative of \(f(x) = \sqrt{x} \) for \(x > 0 \).

 Solution: For any \(x > 0 \),
 \[
 f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x}}{h} \hfill \\
 = \lim_{h \to 0} \left(\frac{\sqrt{x+h} - \sqrt{x}}{h} \right) \left(\frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x} + h + \sqrt{x}} \right) \hfill \\
 = \lim_{h \to 0} \frac{1}{\sqrt{x+h} + \sqrt{x}} = \frac{1}{2\sqrt{x}}.
 \]
4. Let a smooth function \(g(x) \) have the properties: \(g(0) = 3 \), \(g(1) = 1 \), \(g(4) = 7 \).
 a) Show that at some point \(0 < c < 4 \) one has \(g''(c) > 0 \). Better yet, find a number \(m > 0 \) so that \(g''(c) \geq m > 0 \).
 b) Is it true that \(g'' \) must be positive at at least one point in the interval \(0 < x < 1 \)?
 Proof or counterexample.
 c) [This is the optimal version of part (a)]. Let \((x_1, y_1), (x_2, y_2), (x_3, y_3)\) be any three points in the plane with \(x_1 < x_2 < x_3 \), \(y_1 > y_2 \), and \(y_3 > y_2 \). Then there is a point \(c \in (x_1, x_3) \) such that \(g''(c) = m > 0 \), where \(m \) is the second derivative of the (unique) quadratic polynomial passing through the three points.

 Solution: (a) By the mean value theorem, there is a \(c_1 \in (0, 1) \) such that \(g(1) - g(0) = g'(c_1)(1 - 0) \) so \(g'(c_1) = (g(1) - g(0))/(1 - 0) = -2 \). Similarly, there is a \(c_2 \in (1, 4) \) such that \(g(4) - g(1) = g'(c_2)(4 - 1) \), so \(g'(c_2) = (g(4) - g(1))/(4 - 1) = 2 \).

 Next, by the mean value theorem applied to \(g'(x) \) there is \(c \in (c_1, c_2) \) such that
 \[
 g''(c) = \frac{g'(c_2) - g'(c_1)}{c_2 - c_1} = \frac{4}{c_2 - c_1} > \frac{4}{(7 - 0)} = \frac{4}{7}.
 \]

 (b) False. Consider \(g(x) = x^3 - 4x^2 + x + 3 \), then \(g(0) = 0 \), \(g(1) = 1 \), \(g(4) = 7 \), but \(g''(x) = 6x - 8 \) which is negative for \(x \in (0, 1) \).

 (c) Let \(y = p(x) = \alpha x^2 + \beta x + \gamma \) be the quadratic polynomial passing through the three points and let \(h(x) = p(x) - g(x) \). Then \(h(0) = h(1) = h(4) = 0 \). Hence \(h'(c_1) = h'(c_2) = 0 \) for some \(0 < c_1 < 1 < c_2 < 4 \). Thus \(h''(c) = 0 \) for some \(c \in (c_1, c_2) \), that is, \(g''(c) = p''(c) = 2\alpha > 0 \). Note that \(2\alpha = p''(c) > 0 \) by the same argument used in part (a).

5. Let \(v(x) \) be a smooth real-valued function for \(0 \leq x \leq 1 \). If \(v(0) = v(1) = 0 \) and \(v''(x) \geq 0 \) for all \(0 \leq x \leq 1 \), show that \(v(x) \leq 0 \) for all \(0 \leq x \leq 1 \).

 Solution: By contradiction, say \(v(x) > 0 \) for some \(x \in (0, 1) \). Then by the mean value theorem \(v'(c_1) = \frac{v(x) - v(0)}{x - 0} > 0 \) for some \(c_1 \in (0, x) \) and \(v'(c_2) = \frac{v(1) - v(x)}{1 - x} < 0 \) for some \(c_2 \in (x, 1) \). Thus, by the Mean Value theorem again, for some \(c \in (c_1, c_2) \) we have \(v''(c) = \frac{v'(c_2) - v'(c_1)}{c_2 - c_1} < 0 \). This contradicts our assumption that \(v''(x) \geq 0 \).

6. Let \(g(x) \) is a smooth function with \(g(2) = 0 \) and let \(f(x) = x^2 g(x) \). Use the mean value theorem to show that \(f''(c) = 0 \) for some \(0 < c < 2 \).

 Solution: Use the Mean Value Theorem twice. We know \(f(0) = 0^2 g(0) = 0 \) and \(f(2) = 2^2 g(2) = 0 \). So \(f'(c_1) = 0 \) for some \(c_1 \in (0, 2) \). Since \(f'(x) = 2xg(x) + x^2 g'(x) \), \(f'(0) = 0 = f'(c_1) \). Hence \(f''(c) = 0 \) for some \(c \in (0, c_1) \subset (0, 2) \).

7. a) Let \(g(x) := x^3(1 - x) \). Use the mean value theorem to show that \(g''''(c) = 0 \) for some \(0 < c < 1 \).
b) Let \(h(x) := x^3(1 - x)^3 \). Show that \(h'''(x) \) has exactly three distinct roots in the interval \(0 < x < 1 \).

c) Let \(p(x) := \left(\frac{d}{dx} \right)^4 (1 - x^2)^4 \). Show that \(p \) is a polynomial of degree 4 and that it has 4 real distinct roots, all lying in the interval \(-1 < x < 1\).

Solution: (a) Since \(g(0) = g(1) = 0 \), there is \(c_1 \in (0, 1) \) such that \(g'(c_1) = 0 \). Since \(g'(0) = g'(c_1) \), there is \(c_2 \in (0, c_1) \) such that \(g''(c_2) = 0 \). Since \(g''(0) = g''(c_2) = 0 \), there is \(c \in (0, c_2) \) such that \(g'''(c) = 0 \).

(b) Since \(h(0) = h(1) = 0 \), there is \(c_1 \in (0, 1) \) such that \(h'(c_1) = 0 \). Since \(h'(0) = h'(c_1) = h'(1) = 0 \), there are \(c_2 \in (0, c_1) \) and \(c_3 \in (c_1, 1) \) such that \(h''(c_2) = h''(c_3) = 0 \). Since \(h''(0) = h''(c_2) = h''(c_3) = 0 \), there are \(c_4 \in (0, c_2) \), \(c_5 \in (c_2, c_3) \), and \(c_6 \in (c_3, 1) \) such that \(h'''(c_4) = h'''(c_5) = h'''(c_6) = 0 \). So \(h''' \) has at least 3 distinct roots and \(h''' \) has at most 3 distinct roots because it is a polynomial of degree 3.

(c) Since \(h(x) := (1 - x^2) - (1 + x)^4(1 - x)^4 \), this problem is almost identical to part (b). Note that \(p(x) = h'''(x) \). Since \(h \) is a polynomial of degree 8, \(p \) is a polynomial of degree 4. Since \(h(-1) = h(1) = 0 \), there is \(c_1 \in (-1, 1) \) such that \(h'(c_1) = 0 \).

Since \(h'(-1) = h'(c_1) = h'(1) = 0 \), there are \(c_2 \in (-1, c_1) \) and \(c_3 \in (c_1, 1) \) such that \(h''(c_2) = h''(c_3) = 0 \).

Since \(h''(-1) = h''(1) = 0 = h''(c_2) = h''(c_3) \), there are \(c_4 \in (-1, c_2) \), \(c_5 \in (c_2, c_3) \) and \(c_6 \in (c_3, 1) \) such that \(h'''(c_4) = h'''(c_5) = h'''(c_6) = 0 \).

Since \(h'''(0) = h'''(1) = 0 \), there are \(c_7 \in (-1, c_4) \), \(c_8 \in (c_4, c_5) \), \(c_9 \in (c_5, c_6) \), and \(c_{10} \in (c_6, 1) \) such that \(h'''(c_7) = h'''(c_8) = h'''(c_9) = h'''(c_{10}) = 0 \). So \(p = h''' \) has at least 4 real distinct roots and \(p \) has at most 4 real distinct roots because it is a polynomial of degree 4.

Remark: If in part (c) you replace the 4 by \(n \), you get the Legendre polynomial of degree \(n \). It has \(n \) real distinct zeroes in the interval \((-1, 1)\).

8. If \(b \geq 0 \), show that for every real \(c \) the equation \(x^5 + bx + c = 0 \) has exactly one real root.

Solution: Let \(f(x) = x^5 + bx + c \). Since \(f(a) > 0 \) and \(f(-a) < 0 \) for all sufficiently large \(a > 0 \), there is \(x \in (-a, a) \) such that \(f(x) = 0 \). Since \(b \geq 0 \), \(f \) is strictly monotone increasing, so \(f \) has at most one real root.

9. Let \(p(x) := x^3 + 3cx + d \), where \(c \), and \(d \) are real. Under what conditions on \(c \) and \(d \) does this have three distinct real roots? [Suggestion: Look at the graph of \(p \) and observe something simple about the local maximum and local minimum for \(p \) to have three distinct real roots.] [Answer: \(c < 0 \) and \(d^2 < -4c^3 \).]
Solution: Observe that \(p \) is strictly monotone increasing when \(c \geq 0 \) in which case \(p \) has exactly one real root. Thus, if \(p \) has 3 distinct real roots, then we must have \(c \leq 0 \), which we now assume. With hindsight it will be simpler if we write \(c = -\gamma \) so \(\gamma > 0 \) and \(p(x) = x^3 - 3\gamma x + d \).

Since \(p'(x) = 3x^2 - 3\gamma \), then \(p \) is strictly monotone increasing on \((-\infty, -\sqrt{\gamma})\), strictly monotone decreasing on \([-\sqrt{\gamma}, \sqrt{\gamma}]\), and strictly monotone increasing on \([\sqrt{\gamma}, \infty)\).

Because \(p''(x) = 3x \), \(p \) has a local maximum at \(x = -\sqrt{\gamma} \) and a local minimum at \(x = \sqrt{\gamma} \).

Thus \(p \) has at most one root on each of these three intervals. If \(p \) has three distinct roots, then \(p \) must has exactly one root on each of these intervals. Therefore we need \(p(-\sqrt{\gamma}) > 0 \) and \(p(\sqrt{\gamma}) < 0 \).

Conversely, by the intermediate value theorem (used thrice), if \(p(-\sqrt{\gamma}) > 0 \) and \(p(\sqrt{\gamma}) < 0 \) then \(p \) has at least (and thus exactly) three distinct roots.

We now compute \(p(\pm\sqrt{\gamma}) \):

\[
p(+\sqrt{\gamma}) = \gamma\sqrt{\gamma} - 3\gamma\sqrt{\gamma} + d = -2\gamma\sqrt{\gamma} + d.
\]

The condition \(p(+\sqrt{\gamma}) < 0 \) is thus \(d < 2\gamma\sqrt{\gamma} \).

Similarly

\[
p(-\sqrt{\gamma}) = 2\gamma\sqrt{\gamma} + d
\]

and the condition \(p(-\sqrt{\gamma}) > 0 \) is \(d > -2\gamma\sqrt{\gamma} \).

Combining them we get \(-2\gamma\sqrt{\gamma} < d < 2\gamma\sqrt{\gamma}\), that is, \(d^2 < 4\gamma^3 \).

Summarizing in terms of \(c = -\gamma \), \(p(x) = x^3 + 3cx + d \) has three real distinct roots if and only if \(c < 0 \) and \(d^2 < -4c^3 \).

Remark. The general cubic polynomial \(p(x) := x^3 + Bx^2 + Cx + D \) can be reduced to the special form here by making the substitution \(x = t - (B/3) \). You can be led to this by the observation that \(p''(x)/3! = (6x + 2B)/6 \).

10. [\#16.31] Let \(f(x) \) be a differentiable function for all real \(x \) with the property that \(f'(x) < 1 \) for all \(x \). Show has at most one fixed point, that is, at most one point \(p \) where \(f(p) = p \).

Solution: Suppose \(f \) has two distinct fixed points \(a < b \), that is, \(f(a) = a \) and \(f(b) = b \). Then by the Mean Value Theorem there is \(c \in (a, b) \) such that \(f'(c) = \frac{f(b) - f(a)}{b - a} = \frac{b - a}{b - a} = 1 \), which contradicts the assumption that \(f'(x) < 1 \).

11. Let \(f(x) \) be a differentiable function for all real \(x \) with the property that \(|f'(x)| < 1/2 \) for all \(x \). Define the sequence \(x_k \) by the rule \(x_1 = 1 \) and \(x_{k+1} = f(x_k) \) for \(k = 1, 2, \ldots \).
Show that the x_k converge to a point p and that $f(p) = p$, so p is a fixed point of f.

[Suggestion: Use the mean value theorem to show that]

$$|x_{k+1} - x_k| \leq \frac{1}{2} |x_k - x_{k-1}|$$

and then use work we did earlier to conclude that the x_k is a Cauchy sequence etc.

Solution: For any $k \geq 2$, there is c between x_{k-1} and x_k such that $x_{k+1} - x_k = f(x_k) - f(x_{k-1}) = f'(c)(x_k - x_{k-1})$. Since $|f'(c)| < \frac{1}{2}$, $|x_{k+1} - x_k| = |f'(c)||x_k - x_{k-1}| \leq \frac{1}{2}|x_k - x_{k-1}|$. Then x_k converges because of a problem we did before concerning contracting sequences.

12. Suppose u is a twice differentiable function on \mathbb{R} which satisfies the differential equation

$$\frac{d^2 u}{dx^2} + b(x) \frac{du}{dx} - c(x) u = 0,$$

where $b(x)$ and $c(x)$ are continuous functions on \mathbb{R} with $c(x) > 0$ for every $x \in (0,1)$.

a) Show that u cannot have a positive local maximum in the interval $(0,1)$. Also show that u cannot have a negative local minimum in $(0,1)$.

b) If $u(0) = u(1) = 0$, prove that $u(x) = 0$ for every $x \in [0,1]$.

Solution: (a) Proof by contradiction. Assume that u has a positive local maximum at some point $\alpha \in (0,1)$, then $u''(\alpha) \leq 0$, $b(\alpha)u'(\alpha) = 0$, and $-c(\alpha)u(\alpha) < 0$. Adding these three (in)equalities, we get $u''(\alpha) + b(\alpha)u'(-c(\alpha)u(\alpha) < 0$, but u satisfies $u'' + b(x)u' - c(x)u = 0$ so we have a contradiction. Thus u has no positive local maximum on $(0,1)$.

Assume that u has a negative local minimum at $c \in (0,1)$, then the function $v(x) := -u(x)$ also satisfies the same equation, $v'' + bv' - cv = 0$ and would have a positive local maximum – which cannot happen by the previous paragraph. So u has no negative local minimum on $(0,1)$.

(b) Since u is continuous on the closed and bounded interval $[0,1]$, u attains its maximum somewhere on $[0,1]$ at some $c \in [0,1]$. We have $u(c) \geq u(0) = 0$. If $u(c) > 0$, since $u(x) = 0$ at the end points of $[0,1]$, then u has a positive local maximum at $c \in (0,1)$, which is impossible by part (a). Hence $u(c) = 0$, that is $u \leq 0$ on $[0,1]$. Similarly, $u \geq 0$ on $[0,1]$. Consequently $u(x) \equiv 0$ on $[0,1]$.

[Last revised: November 2, 2013]