Math 202
Exam 1
Jerry L. Kazdan
October 1, 2013 12:00-1:20

Directions: Part A has 8 shorter problems (5 points each) while Part B has 3 traditional problems (10 points each). To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3×5 with notes on both sides.

Part A: Eight shorter Problems, 5 points each.
A-1. Show that $\sqrt{5}$ is not a rational number.

Score	
A-1	
A-2	
A-3	
A-4	
A-5	
A-6	
A-7	
A-8	
B-1	
B-2	
B-3	
Total	

A-3. Determine if the set $S=\left\{x \in \mathbb{R}: 2 x^{2}>x^{3}-3 x\right\}$ is bounded above and/or below, and if so, find $\inf (S)$ and $\sup (S)$ - if they exist.

A-4. Give an example of a sequence of real numbers that is not monotone but that does converge to some limit.

A-5. If x_{1} is a given real number and $x_{n+1}=\sqrt{1+x_{n}^{2}}$ for $n=1,2, \ldots$, show that the sequence x_{n} diverges.

A-6. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be bounded functions such that $f(x) \leq g(x)$ for all x. Let F denote the image of f and G the image of g. Give an example (a picture) of pairs of such functions with $\sup (F)>\inf (G)$.

A-7. Compute $\lim _{n \rightarrow \infty} \frac{1+2 n-5 n^{2}}{4+3 n^{2}}$. Carefully note any standard theorems you use.

A-8. Give an example of a sequence x_{n} of real numbers with at least two subsequences that converge to different limits.

Part B: Three traditional problems, 10 points each.
B-1. a) For which real numbers $c>0$ does $\lim _{n \rightarrow \infty} n^{2} c^{n}=0$? Why?
b) Repeat this if c is a complex number.

B-2. Let the real sequence $b_{n}>0$ converge to a limit $B>0$. Show with your bare hands (an ϵ argument) that $1 / b_{n} \rightarrow 1 / B$. [Be careful to show that any denominators are bounded away from zero.]

B-3. A sequence $x_{n} \in \mathbb{R}$ is called contracting if for some constant $0<c<1$ (such as $c=\frac{1}{2}$) it has the property that for all $n=1,2,3, \ldots$

$$
\left|x_{n+1}-x_{n}\right| \leq c\left|x_{n}-x_{n-1}\right| .
$$

The point of this problem is to show that a contracting sequence converges.
a) Show that $\left|x_{n+1}-x_{n}\right| \leq c^{n}\left|x_{1}-x_{0}\right|$ for all n.
b) Use $x_{n+1}-x_{0}=\left(x_{n+1}-x_{n}\right)+\left(x_{n}-x_{n-1}\right)+\cdots+\left(x_{1}-x_{0}\right)$ to show that

$$
\left|x_{n+1}-x_{0}\right| \leq\left(c^{n}+c^{n-1}+\cdots+c+1\right)\left|x_{1}-x_{0}\right|
$$

c) More generally, if $n>k$ show that

$$
\begin{aligned}
\left|x_{n+1}-x_{k}\right| & \leq\left(c^{n}+c^{n-1}+\cdots+c^{k}\right)\left|x_{1}-x_{0}\right| \\
& =c^{k}\left(\frac{1-c^{n-k+1}}{1-c}\right)\left|x_{1}-x_{0}\right|<c^{k} \frac{\left|x_{1}-x_{0}\right|}{1-c} .
\end{aligned}
$$

Remark: Since $0<c<1$, this shows that the x_{n} are a Cauchy sequence and hence converge.

