
Math 202 Exam 1 Jerry L. Kazdan
October 1, 2013 12:00 — 1:20

Directions: Part A has 8 shorter problems (5 points each) while Part B has 3 traditional problems
(10 points each). To receive full credit your solution should be clear and correct. Neatness counts.
You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3 ×5 with notes
on both sides.

Part A: Eight shorter Problems, 5 points each.

A-1. Show that
√

5 is not a rational number.

Solution: Say
√

5 is a rational number,
√

5 = a/b , where a and b . We may assume that
a and b have no common factors. Now 5b2 = a2 so 5 is a factor of a2 . Since 5 is a prime
number, it is a factor of a . Thus a = 5k for some integer k . But then b2 = 5k2 so we see that
b1 and hence b is divisible by 5. This contradicts that a and b have no common factor.

A-2. If a and b are rational numbers, consider the set S of real numbers of the form a + b
√

5.
Show that the non-zero elements in S have multiplicative inverses in S . [This is the key step
in showing that S is a field.]

Solution: The multiplicative inverse of a + b
√

5 as a real number is 1/(a + b
√

5. If a and b
are rational we want to write this in the form α + β

√
5, where α and β are rational. We use

a standard procedure:

1

a + b
√

5
=

1

a + b
√

5

(

a − b
√

5

a − b
√

5

)

=
a − b

√
5

a2 − 5b2
=

(

a

a2 − 5b2

)

+

( −b

a2 − 5b2

)√
5.

The denominator is never zero because
√

5 is irrational.

A-3. Determine if the set S = {x ∈ R : 2x2 > x3 − 3x} is bounded above and/or below, and if so,
find inf(S) and sup(S) — if they exist.

Solution: Rewrite this as p(x) := x3 − 2x2 − 3x < 0. Factoring the polynomial we find
p(x) = x(x− 3)(x + 1) < 0. Clearly p(x) is large positive for x large positive and negative for
x large negative. Since we know the roots of p are −1, 0, and 3, we see that p is negative for
x < −1 and 0 < x < 3. This is the set S . Its sup is x = 3. Because S is unbounded below it
has no inf .

A-4. Give an example of a sequence of real numbers that is not monotone but that does converge
to some limit.

Solution:
(−1)n

n

A-5. If x1 is a given real number and xn+1 =
√

1 + x2
n for n = 1, 2, . . . , show that the sequence

xn diverges.

Solution: Method 1. Compute the first few terms to try to see what is happening.
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x2 =
√

1 + x2
1
, x3 =

√

1 + (1 + x2
1
) =

√

2 + x2
1
, x4 =

√

1 + (2 + x2
1
) =

√

3 + x2
1
,. . . .

The pattern is clear: xn+1 =
√

n + x2
1

which diverges.

Method 2. Let un := x2
n . Then un+1 = 1 + un so un+1 = n + u1 which is unbounded.

Method 3. Reasoning by contradiction, say xn → L . Then L =
√

1 + L2 > L .

A-6. Let f, g : R → R be bounded functions such that f(x) ≤ g(x) for all x . Let F denote the
image of f and G the image of g . Give an example (a picture) of pairs of such functions with
sup(F ) > inf(G).

Solution: A simple example is f(x) := cos x and g(x) := cos x + 1. Simpler, let f(x) =
g(x) = cos x . More generally, f(x) could be any bounded function that is not the constant
function and let g(x) := f(x).

A-7. Compute lim
n→∞

1 + 2n − 5n2

4 + 3n2
. Carefully note any standard theorems you use.

Solution: For large n this fraction is essentially −5n
2

3n2 = −5

3
. Since this “computation”

cancelled infinities from numerator and denominator, a real proof should be more careful.
Dividing numerator and denominator by n2 , we want to compute

lim
n→∞

(

1

n2 + 2

n
− 5

4

n2 + 3

)

=
limn→∞

(

1

n2 + 2

n
− 5
)

limn→∞

(

4

n2 + 3
) =

−5

3
.

In this computation we used the theorem that if an → A and bn → B , then an + bn → A+B ,
and also an/bn → A/B (assuming bn 6= 0 and B 6= 0).

A-8. Give an example of a sequence xn of real numbers with at least two subsequences that converge
to different limits.

Solution: Example 1). xn = (−1)n , Example 2). xn = (−1)n + 1

n
.

Part B: Three traditional problems, 10 points each.

B-1. a) For which real numbers c > 0 does lim
n→∞

n2cn = 0? Why?

Solution: If c ≥ 1 this clearly diverges to infinity. If, say, c = 1/2, then the sequence
is n2/2n so at each step the denominator is doubled while the numerator increases more
slowly. It looks like in this case, the sequence converges to zero.

After this experimentation, the ratio test efficiently resolves the issue. Let an = n2cn .
Then as n tends to infinity,

an+1

an

=
(n + 1)2cn+1

n2cn
=

(n + 1)2

n2
c → c.

By the ratio test, if 0 < c < 1, this sequence converges to 0. If c ≥ 1, a direct inspection
(done above) alredy showed that the sequence diverges.
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b) Repeat this if c is a complex number.

Solution: There is essentially no change since we can take absolute values. Here are the
details. As above, let an = n2cn . Then |an| = n2|c|n . By part a), if |c| < 1, then |an| → 0
(and hence an → 0). If |c| ≥ 1, then the sequence clearly blows up.

B-2. Let the real sequence bn > 0 converge to a limit B > 0. Show with your bare hands (an ǫ
argument) that 1/bn → 1/B .

Solution: Given ǫ > 0 we want an integer N(ǫ) so that if n ≥ N , then
∣

∣

∣

∣

1

n
− 1

B

∣

∣

∣

∣

< ǫ, that is,

∣

∣

∣

∣

B − bn

bnB

∣

∣

∣

∣

< ǫ. (1)

There are two issues: keeping the bn in the denominator away from 0 and making the numerator
small. Treat these separately.

Lemma. If bn > 0 and bn → B > 0, then there is an N1 so that if n ≥ N1 , then bn > B/2.

Proof. Since bn → B > 0, there is an integer N1 so that if n ≥ N1 , then |bn − B| < B/2.
Thus −B/2 < bn − B < B/2. In particular, B/2 < bn . so 1/bn < 2/B .

Using this and keeping (1) in mind, since bn → B , there is an N so that if n ≥ N then
|bn−B| < 1

2
B2ǫ . Restricting N further so that N ≥ N1 , by the Lemma we see that inequality

(1) is satisfied:
∣

∣

∣

∣

B − bn

bnB

∣

∣

∣

∣

<

∣

∣

∣

∣

B − bn

B2/2

∣

∣

∣

∣

< ǫ.

B-3. A sequence xn ∈ R is called contracting if for some constant 0 < c < 1 (such as c = 1

2
) it has

the property that for all n = 1, 2, 3, . . .

|xn+1 − xn| ≤ c|xn − xn−1|.

The point of this problem is to show that a contracting sequence converges.

a) Show that |xn+1 − xn| ≤ cn|x1 − x0| for all n .

Solution: Since |x2−x1| ≤ c|x1−x0| , then |x3−x2| ≤ c|x2−x1| ≤ c2|x1−x0| . Repeating
this we see that |x4 − x3| ≤ c|x3 − x2| ≤ c3|x1 − x0| , and, more generally,

|xn+1 − xn| ≤ cn|x1 − x0| for all n = 0, 1, 2, . . . .

This induction argument is sufficiently obvious that a formal induction proof is not needed.

b) Use xn+1 − x0 = (xn+1 − xn) + (xn − xn−1) + · · · + (x1 − x0) to show that

|xn+1 − x0| ≤
(

cn + cn−1 + · · · + c + 1
)

|x1 − x0|

Solution: By the triangle inequality and part a),

|xn+1 − x0| ≤|xn+1 − xn| + |xn − xn−1| + · · · + |x1 − x0|
≤
(

cn + cn−1 + · · · + c + 1
)

|x1 − x0|.
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c) More generally, if n > k show that

|xn+1 − xk| ≤
(

cn + cn−1 + · · · + ck

)

|x1 − x0|

=ck

(

1 − cn−k+1

1 − c

)

|x1 − x0| < ck
|x1 − x0|

1 − c
.

Remark: Since 0 < c < 1, this shows that the xn are a Cauchy sequence and hence
converge.

Solution: This is a straightforward modification of the previous part. By the triangle
inequality, part a), and standard formulas for geometric series:

|xn+1 − xk| ≤|xn+1 − xn| + |xn − xn−1| + · · · + |xk+1 − xk|

≤
(

cn + cn−1 + · · · + ck

)

|x1 − x0|

=ck

(

cn−k + · · · + c + 1
)

)|x1 − x0|

= ck

(

1 − cn−k+1

1 − c

)

|x1 − x0| < ck
|x1 − x0|

1 − c
.

The key point is that the final inequality is independent of n – as long as n > k . Since
0 < c < 1, by choosing k large, then ck can be as small as you wish.


