Math 202 Exam 1 Jerry L. Kazdan
October 1, 2013 12:00 — 1:20

DIRECTIONS: Part A has 8 shorter problems (5 points each) while Part B has 3 traditional problems
(10 points each). To receive full credit your solution should be clear and correct. Neatness counts.
You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3 x5 with notes
on both sides.

PART A: Eight shorter Problems, 5 points each.

A-1. Show that +/5 is not a rational number.

SOLUTION: Say +/5 is a rational number, /5 = a/b, where a and b. We may assume that
a and b have no common factors. Now 56> = a? so 5 is a factor of a®. Since 5 is a prime
number, it is a factor of a. Thus a = 5k for some integer k. But then b? = 5k? so we see that
b' and hence b is divisible by 5. This contradicts that a and b have no common factor.

A-2. If a and b are rational numbers, consider the set S of real numbers of the form a + bv/5.
Show that the non-zero elements in S have multiplicative inverses in S. [This is the key step
in showing that S is a field.]

SOLUTION: The multiplicative inverse of a + bv/5 as a real number is 1/(a+ bV/5. If @ and b
are rational we want to write this in the form o + 3v/5, where o and 3 are rational. We use
a standard procedure:
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The denominator is never zero because /5 is irrational.

A-3. Determine if the set S = {x € R: 222 > 2% — 32} is bounded above and/or below, and if so,
find inf(S) and sup(S) — if they exist.

SOLUTION:  Rewrite this as p(z) := 2% — 202 — 32 < 0. Factoring the polynomial we find
p(z) =z(x —3)(x+1) < 0. Clearly p(x) is large positive for x large positive and negative for
x large negative. Since we know the roots of p are —1, 0, and 3, we see that p is negative for
r < —1 and 0 <z < 3. This is the set S. Its sup is £ = 3. Because S is unbounded below it
has no inf.

A-4. Give an example of a sequence of real numbers that is not monotone but that does converge
to some limit.
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SOLUTION:

A-5. If x; is a given real number and x,41 = /1422 for n = 1,2,..., show that the sequence
T, diverges.

SOLUTION: Method 1. Compute the first few terms to try to see what is happening.
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xy = /1+ 22, 3 =/1+(1+23)=/2+27, Ta=/1+2+23)=/3+27,. ...
The pattern is clear: z,11 = \/n + 2% which diverges.

Method 2. Let u, := l’% Then 41 =1+ %y SO Upt+1 = 1 + w1 which is unbounded.

Method 3. Reasoning by contradiction, say x, — L. Then L =1+ L? > L.

A-6. Let f, g: R — R be bounded functions such that f(z) < g(z) for all z. Let F denote the
image of f and G the image of g. Give an example (a picture) of pairs of such functions with

sup(F') > inf(G).

SOLUTION: A simple example is f(x) := cosx and g(x) := cosx + 1. Simpler, let f(z) =
g(z) = cosx. More generally, f(x) could be any bounded function that is not the constant
function and let g(z) := f(x).

1+ 2n — 5n?
A-7. Compute lim 1+ 2n = 507

1132 Carefully note any standard theorems you use.
n—oo mn

. . . _5n2 _ . . .
SoLuTION: For large n this fraction is essentially 3?3 = 75 Since this “computation”
cancelled infinities from numerator and denominator, a real proof should be more careful.

Dividing numerator and denominator by n?, we want to compute

lim <nlz+i—5> _limpso (2 +2-5) 5
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n—oo limy—oo (25 + 3) -3
In this computation we used the theorem that if a, — A and b, — B, then a, +b, - A+ B,
and also ay, /b, — A/B (assuming b, # 0 and B # 0).

A-8. Give an example of a sequence x,, of real numbers with at least two subsequences that converge
to different limits.

SoLuTION: Example 1). x, = (—1)", Example 2). x, = (—1)" + %
PART B: Three traditional problems, 10 points each.

B-1. a) For which real numbers ¢ > 0 does lim n?c" = 0? Why?

n—oo
SOLUTION: If ¢ > 1 this clearly diverges to infinity. If, say, ¢ = 1/2, then the sequence
is n?/2" so at each step the denominator is doubled while the numerator increases more
slowly. It looks like in this case, the sequence converges to zero.
2

After this experimentation, the ratio test efficiently resolves the issue. Let a, = n°c".

Then as n tends to infinity,
anr1 (n+1)2 (n41)2

= B} = B} c — C.

an, n<ch n

By the ratio test, if 0 < ¢ < 1, this sequence converges to 0. If ¢ > 1, a direct inspection
(done above) alredy showed that the sequence diverges.
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b) Repeat this if ¢ is a complex number.

SOLUTION: There is essentially no change since we can take absolute values. Here are the
details. As above, let a, = n?c". Then |a,| = n?|c|*. By part a), if |c| < 1, then |a,| — 0
(and hence a, — 0). If |¢| > 1, then the sequence clearly blows up.

B-2. Let the real sequence b, > 0 converge to a limit B > 0. Show with your bare hands (an e
argument) that 1/b, — 1/B.

SOLUTION: Given € > 0 we want an integer N(€) so that if n > N, then
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There are two issues: keeping the b, in the denominator away from 0 and making the numerator
small. Treat these separately.

Lemma. Ifb, >0 and b, — B > 0, then there is an N1 so that if n > Ny, then b, > B/2.

PROOF. Since b, — B > 0, there is an integer N; so that if n > Ny, then |b, — B| < B/2.
Thus —B/2 < b, — B < B/2. In particular, B/2 < b,. so 1/b, < 2/B.

Using this and keeping (1) in mind, since b, — B, there is an N so that if n > N then
|b, — B| < %BQE. Restricting N further so that N > N7, by the Lemma we see that inequality
(1) is satisfied:

'B—bn
<€

b, B
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B-3. A sequence z,, € R is called contracting if for some constant 0 < ¢ < 1 (such as ¢ = %) it has
the property that for all n =1,2,3,...

|Tpy1 — n| < clop — 2p_1]

The point of this problem is to show that a contracting sequence converges.
a) Show that |r,11 — x| < ™|z1 — x| for all n.

SOLUTION: Since |xo—2z1| < c|lw1 — x|, then |23 —x2| < c|lwa—x1| < 2|21 —20|. Repeating
this we see that |z4 — 23] < c|z3 — 22| < ¢3|z1 — 20|, and, more generally,

|Tnt1 — 2p| < |xy — a9 forall n=0,1,2,....

This induction argument is sufficiently obvious that a formal induction proof is not needed.

b) Use i1 — 2o = (Tps1 — Tn) + (Tn — Tp—1) + - - + (21 — 20) to show that
|33n+1 —I‘0| < (Cn+Cn_1 +---+c+ 1) |$1 —l‘0|
SOLUTION: By the triangle inequality and part a),

|Tnt1 — xo| <|Tny1 — Tn| + |Tn — Tp—1| + -+ |21 — 20
< ("o 1) |21 — @l
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c) More generally, if n > k show that

N (c" + 4 +c’“) |21 — o]

1 — ¢kl 1 —
= — |x1—x0|<ckM.
1—c 1—c¢

REMARK: Since 0 < ¢ < 1, this shows that the z, are a Cauchy sequence and hence
converge.

SOLUTION: This is a straightforward modification of the previous part. By the triangle
inequality, part a), and standard formulas for geometric series:

|Tn1 — k| <|Tpg1 — ol + |20 — 21| + - + [T — T
S(c”—i—c"_l—i----—i-ck) E

=cF (c"_k+-"+c+ 1>)|l‘1 — o

1_Cn—k+1 1 —
= ———— ) |21 — 20| < ckM.
1—c 1—c¢

The key point is that the final inequality is independent of n — as long as n > k. Since
0 < ¢ < 1, by choosing k large, then ¢ can be as small as you wish.



