Directions: Part A has 8 shorter problems (5 points each) while Part B has 3 traditional problems (10 points each). To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3×5 with notes on both sides.

Part A: Eight shorter Problems, 5 points each.
A-1. Show that $\sqrt{5}$ is not a rational number.
Solution: Say $\sqrt{5}$ is a rational number, $\sqrt{5}=a / b$, where a and b. We may assume that a and b have no common factors. Now $5 b^{2}=a^{2}$ so 5 is a factor of a^{2}. Since 5 is a prime number, it is a factor of a. Thus $a=5 k$ for some integer k. But then $b^{2}=5 k^{2}$ so we see that b^{1} and hence b is divisible by 5 . This contradicts that a and b have no common factor.

A-2. If a and b are rational numbers, consider the set S of real numbers of the form $a+b \sqrt{5}$. Show that the non-zero elements in S have multiplicative inverses in S. [This is the key step in showing that S is a field.]

Solution: The multiplicative inverse of $a+b \sqrt{5}$ as a real number is $1 /(a+b \sqrt{5}$. If a and b are rational we want to write this in the form $\alpha+\beta \sqrt{5}$, where α and β are rational. We use a standard procedure:

$$
\frac{1}{a+b \sqrt{5}}=\frac{1}{a+b \sqrt{5}}\left(\frac{a-b \sqrt{5}}{a-b \sqrt{5}}\right)=\frac{a-b \sqrt{5}}{a^{2}-5 b^{2}}=\left(\frac{a}{a^{2}-5 b^{2}}\right)+\left(\frac{-b}{a^{2}-5 b^{2}}\right) \sqrt{5}
$$

The denominator is never zero because $\sqrt{5}$ is irrational.
A-3. Determine if the set $S=\left\{x \in \mathbb{R}: 2 x^{2}>x^{3}-3 x\right\}$ is bounded above and/or below, and if so, find $\inf (S)$ and $\sup (S)$ - if they exist.

Solution: Rewrite this as $p(x):=x^{3}-2 x^{2}-3 x<0$. Factoring the polynomial we find $p(x)=x(x-3)(x+1)<0$. Clearly $p(x)$ is large positive for x large positive and negative for x large negative. Since we know the roots of p are $-1,0$, and 3 , we see that p is negative for $x<-1$ and $0<x<3$. This is the set S. Its sup is $x=3$. Because S is unbounded below it has no inf.

A-4. Give an example of a sequence of real numbers that is not monotone but that does converge to some limit.
Solution: $\frac{(-1)^{n}}{n}$

A-5. If x_{1} is a given real number and $x_{n+1}=\sqrt{1+x_{n}^{2}}$ for $n=1,2, \ldots$, show that the sequence x_{n} diverges.

Solution: Method 1. Compute the first few terms to try to see what is happening.
$x_{2}=\sqrt{1+x_{1}^{2}}, \quad x_{3}=\sqrt{1+\left(1+x_{1}^{2}\right)}=\sqrt{2+x_{1}^{2}}, \quad x_{4}=\sqrt{1+\left(2+x_{1}^{2}\right)}=\sqrt{3+x_{1}^{2}}, \ldots$ The pattern is clear: $x_{n+1}=\sqrt{n+x_{1}^{2}}$ which diverges.

Method 2. Let $u_{n}:=x_{n}^{2}$. Then $u_{n+1}=1+u_{n}$ so $u_{n+1}=n+u_{1}$ which is unbounded.
Method 3. Reasoning by contradiction, say $x_{n} \rightarrow L$. Then $L=\sqrt{1+L^{2}}>L$.

A-6. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be bounded functions such that $f(x) \leq g(x)$ for all x. Let F denote the image of f and G the image of g. Give an example (a picture) of pairs of such functions with $\sup (F)>\inf (G)$.

Solution: A simple example is $f(x):=\cos x$ and $g(x):=\cos x+1$. Simpler, let $f(x)=$ $g(x)=\cos x$. More generally, $f(x)$ could be any bounded function that is not the constant function and let $g(x):=f(x)$.

A-7. Compute $\lim _{n \rightarrow \infty} \frac{1+2 n-5 n^{2}}{4+3 n^{2}}$. Carefully note any standard theorems you use.
Solution: For large n this fraction is essentially $\frac{-5 n^{2}}{3 n^{2}}=\frac{-5}{3}$. Since this "computation" cancelled infinities from numerator and denominator, a real proof should be more careful. Dividing numerator and denominator by n^{2}, we want to compute

$$
\lim _{n \rightarrow \infty}\left(\frac{\frac{1}{n^{2}}+\frac{2}{n}-5}{\frac{4}{n^{2}}+3}\right)=\frac{\lim _{n \rightarrow \infty}\left(\frac{1}{n^{2}}+\frac{2}{n}-5\right)}{\lim _{n \rightarrow \infty}\left(\frac{4}{n^{2}}+3\right)}=\frac{-5}{3}
$$

In this computation we used the theorem that if $a_{n} \rightarrow A$ and $b_{n} \rightarrow B$, then $a_{n}+b_{n} \rightarrow A+B$, and also $a_{n} / b_{n} \rightarrow A / B$ (assuming $b_{n} \neq 0$ and $B \neq 0$).

A-8. Give an example of a sequence x_{n} of real numbers with at least two subsequences that converge to different limits.

Solution: Example 1). $x_{n}=(-1)^{n}$, Example 2). $x_{n}=(-1)^{n}+\frac{1}{n}$.
Part B: Three traditional problems, 10 points each.
B-1. a) For which real numbers $c>0$ does $\lim _{n \rightarrow \infty} n^{2} c^{n}=0$? Why?
Solution: If $c \geq 1$ this clearly diverges to infinity. If, say, $c=1 / 2$, then the sequence is $n^{2} / 2^{n}$ so at each step the denominator is doubled while the numerator increases more slowly. It looks like in this case, the sequence converges to zero.
After this experimentation, the ratio test efficiently resolves the issue. Let $a_{n}=n^{2} c^{n}$. Then as n tends to infinity,

$$
\frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{2} c^{n+1}}{n^{2} c^{n}}=\frac{(n+1)^{2}}{n^{2}} c \rightarrow c
$$

By the ratio test, if $0<c<1$, this sequence converges to 0 . If $c \geq 1$, a direct inspection (done above) alredy showed that the sequence diverges.
b) Repeat this if c is a complex number.

Solution: There is essentially no change since we can take absolute values. Here are the details. As above, let $a_{n}=n^{2} c^{n}$. Then $\left|a_{n}\right|=n^{2}|c|^{n}$. By part a), if $|c|<1$, then $\left|a_{n}\right| \rightarrow 0$ (and hence $a_{n} \rightarrow 0$). If $|c| \geq 1$, then the sequence clearly blows up.

B-2. Let the real sequence $b_{n}>0$ converge to a limit $B>0$. Show with your bare hands (an ϵ argument) that $1 / b_{n} \rightarrow 1 / B$.

Solution: Given $\epsilon>0$ we want an integer $N(\epsilon)$ so that if $n \geq N$, then

$$
\begin{equation*}
\left|\frac{1}{n}-\frac{1}{B}\right|<\epsilon, \quad \text { that is, } \quad\left|\frac{B-b_{n}}{b_{n} B}\right|<\epsilon . \tag{1}
\end{equation*}
$$

There are two issues: keeping the b_{n} in the denominator away from 0 and making the numerator small. Treat these separately.
Lemma. If $b_{n}>0$ and $b_{n} \rightarrow B>0$, then there is an N_{1} so that if $n \geq N_{1}$, then $b_{n}>B / 2$.
Proof. Since $b_{n} \rightarrow B>0$, there is an integer N_{1} so that if $n \geq N_{1}$, then $\left|b_{n}-B\right|<B / 2$. Thus $-B / 2<b_{n}-B<B / 2$. In particular, $B / 2<b_{n}$. so $1 / b_{n}<2 / B$.

Using this and keeping (1) in mind, since $b_{n} \rightarrow B$, there is an N so that if $n \geq N$ then $\left|b_{n}-B\right|<\frac{1}{2} B^{2} \epsilon$. Restricting N further so that $N \geq N_{1}$, by the Lemma we see that inequality (1) is satisfied:

$$
\left|\frac{B-b_{n}}{b_{n} B}\right|<\left|\frac{B-b_{n}}{B^{2} / 2}\right|<\epsilon .
$$

B-3. A sequence $x_{n} \in \mathbb{R}$ is called contracting if for some constant $0<c<1$ (such as $c=\frac{1}{2}$) it has the property that for all $n=1,2,3, \ldots$

$$
\left|x_{n+1}-x_{n}\right| \leq c\left|x_{n}-x_{n-1}\right| .
$$

The point of this problem is to show that a contracting sequence converges.
a) Show that $\left|x_{n+1}-x_{n}\right| \leq c^{n}\left|x_{1}-x_{0}\right|$ for all n.

Solution: Since $\left|x_{2}-x_{1}\right| \leq c\left|x_{1}-x_{0}\right|$, then $\left|x_{3}-x_{2}\right| \leq c\left|x_{2}-x_{1}\right| \leq c^{2}\left|x_{1}-x_{0}\right|$. Repeating this we see that $\left|x_{4}-x_{3}\right| \leq c\left|x_{3}-x_{2}\right| \leq c^{3}\left|x_{1}-x_{0}\right|$, and, more generally,

$$
\left|x_{n+1}-x_{n}\right| \leq c^{n}\left|x_{1}-x_{0}\right| \quad \text { for all } n=0,1,2, \ldots
$$

This induction argument is sufficiently obvious that a formal induction proof is not needed.
b) Use $x_{n+1}-x_{0}=\left(x_{n+1}-x_{n}\right)+\left(x_{n}-x_{n-1}\right)+\cdots+\left(x_{1}-x_{0}\right)$ to show that

$$
\left|x_{n+1}-x_{0}\right| \leq\left(c^{n}+c^{n-1}+\cdots+c+1\right)\left|x_{1}-x_{0}\right|
$$

Solution: By the triangle inequality and part a),

$$
\begin{aligned}
\left|x_{n+1}-x_{0}\right| & \leq\left|x_{n+1}-x_{n}\right|+\left|x_{n}-x_{n-1}\right|+\cdots+\left|x_{1}-x_{0}\right| \\
& \leq\left(c^{n}+c^{n-1}+\cdots+c+1\right)\left|x_{1}-x_{0}\right| .
\end{aligned}
$$

c) More generally, if $n>k$ show that

$$
\begin{aligned}
\left|x_{n+1}-x_{k}\right| & \leq\left(c^{n}+c^{n-1}+\cdots+c^{k}\right)\left|x_{1}-x_{0}\right| \\
& =c^{k}\left(\frac{1-c^{n-k+1}}{1-c}\right)\left|x_{1}-x_{0}\right|<c^{k} \frac{\left|x_{1}-x_{0}\right|}{1-c} .
\end{aligned}
$$

Remark: Since $0<c<1$, this shows that the x_{n} are a Cauchy sequence and hence converge.
Solution: This is a straightforward modification of the previous part. By the triangle inequality, part a), and standard formulas for geometric series:

$$
\begin{aligned}
\left|x_{n+1}-x_{k}\right| & \leq\left|x_{n+1}-x_{n}\right|+\left|x_{n}-x_{n-1}\right|+\cdots+\left|x_{k+1}-x_{k}\right| \\
& \leq\left(c^{n}+c^{n-1}+\cdots+c^{k}\right)\left|x_{1}-x_{0}\right| \\
& \left.=c^{k}\left(c^{n-k}+\cdots+c+1\right)\right)\left|x_{1}-x_{0}\right| \\
& =c^{k}\left(\frac{1-c^{n-k+1}}{1-c}\right)\left|x_{1}-x_{0}\right|<c^{k} \frac{\left|x_{1}-x_{0}\right|}{1-c} .
\end{aligned}
$$

The key point is that the final inequality is independent of $n-$ as long as $n>k$. Since $0<c<1$, by choosing k large, then c^{k} can be as small as you wish.

