Signature

Math 202
Exam 2
Jerry L. Kazdan
November 5, 2013 12:00-1:20

Directions: Part A has 5 shorter problems (8 points each) while Part B has 4 traditional problems (15 points each). [100 points total].
To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3×5 with notes on both sides.

Part A: Five shorter problems, 8 points each [total: 40 points]

A-1. Give an example of an infinite series $\sum a_{n}$ that converges but does not converge absolutely. [You do not need to justify your assertion.]

A-2. Give an example of a bounded function defined on $-2 \leq x \leq 2$ that is continuous everywhere except at $x=0$. [You do not need to justify your assertion].

Score	
A-1	
A-2	
A-3	
A-4	
A-5	
B-1	
B-2	
B-3	
B-4	
Total	

A-3. Show that the polynomial $p(x):=x^{6}+x^{5}-5$ has at least two real zeroes.

A-4. Let $g(x)$ be any smooth function and let $f(x)=(x-1)(x-2)(x-3) g(x)$. Show there is a point $c \in(1,3)$ where $f^{\prime \prime}(c)=0$.

A-5. Say a function $f(x)$ has the properties $f^{\prime}(x)=2$ for all $x \in \mathbb{R}$ and $f(1)=2$. Show that $f(x)=2 x$. [Hint: To show that " $A=B$ ", it is often easiest to show that " $A-B=0$ ".]

Part B: Four traditional problems, 15 points each [60 points[
B-1. Determine if the series $1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots$ converges or diverges. Please explain your reasoning.

B-2. Use the definition of the derivative as the limit of a difference quotient to show that if $f(x)=$ $\cos 2 x$, then f is differentiable everywhere and compute its derivative. [You may use that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ and $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=0$.]

