Signature	Printed Name		
Math 202 November 5, 2013	Exam 2	Jerry L. Kazd 12:00 — 1:	
DIRECTIONS: Part A has 5 shorter problems (8 points each) while Part B has 4 traditional problems (15 points each). [100 points total]. To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3 ×5 with notes on both sides.			
Part A: Five shorter problems, 8 poin	ts each [total: 40 points]		
A-1. Give an example of an infinite ser	ries $\sum a_n$ that converges but does not converge stify your assertion.]	onverge	Score
absolutely. [You do not need to just		A-1	
		A-2	
		A-3	
	nction defined on $-2 \le x \le 2$ that is continuous do not need to justify your assertion].	A-4	
		A-5	
A-2. Give an example of a bounded f		inuous B-1	
		B-2	
		В-3	

B-4

Total

A-3. Show that the polynomial $p(x) := x^6 + x^5 - 5$ has at least two *real* zeroes.

A-4. Let g(x) be any smooth function and let f(x) = (x-1)(x-2)(x-3)g(x). Show there is a point $c \in (1, 3)$ where f''(c) = 0.

A-5. Say a function f(x) has the properties f'(x)=2 for all $x\in\mathbb{R}$ and f(1)=2. Show that f(x)=2x. [Hint: To show that "A=B", it is often easiest to show that "A-B=0".]

Part B: Four traditional problems, 15 points each [60 points]

B-1. Determine if the series $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$ converges or diverges. Please explain your reasoning.

B-2. Use the definition of the derivative as the limit of a difference quotient to show that if $f(x) = \cos 2x$, then f is differentiable everywhere and compute its derivative. [You may use that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$ and $\lim_{\theta \to 0} \frac{1-\cos \theta}{\theta} = 0$.]