Directions: Part A has 5 shorter problems (8 points each) while Part B has 4 traditional problems (15 points each). [100 points total].
To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3×5 with notes on both sides.

Part A: Five shorter problems, 8 points each [total: 40 points]
A-1. Give an example of an infinite series $\sum a_{n}$ that converges but does not converge absolutely.
[You do not need to justify your assertion.]
Solution: The alternating harmonic series: $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+\cdots$
A-2. Give an example of a bounded function defined on $-2 \leq x \leq 2$ that is continuous everywhere except at $x=0$. [You do not need to justify your assertion].
SOLUTION: $f(x)=\left\{\begin{array}{lr}0 & -2 \leq x \leq 0, \\ 1 & 0<x \leq 2 .\end{array} \quad\right.$ also $\quad f(x)=\left\{\begin{array}{ll}\sin (1 / x) & x \neq 0, \\ 0 & x=0 .\end{array}\right.$.
The function $g(x)=1 / x$ for $x \neq 0$ and $g(0)=1$ is not an example. Although it is certainly not continuous at $x=0$, it is not bounded - and the problem asks for a bounded function.

A-3. Show that the polynomial $p(x):=x^{6}+x^{5}-5$ has at least two real zeroes.
Solution: For x near $\pm \infty$, clearly $p(x)>0$. Also $p(0)=-5$. Now apply the intermediate value theorem to the two intervals $x \leq 0$ and $x \geq 0$. [One could also have observed that just as obviously $p(\pm 2)>0$ so there are two real roots in the interval $-2<x<2$].

A-4. Let $g(x)$ be any smooth function and let $f(x)=(x-1)(x-2)(x-3) g(x)$. Show there is a point $c \in(1,3)$ where $f^{\prime \prime}(c)=0$.

Solution: By Rolle's theorem there are points c_{1} with $1<c_{1}<2$ and c_{2} with $2<c_{2}<3$ with $f^{\prime}\left(c_{1}\right)=0$ and $f^{\prime}\left(c_{2}\right)=0$. Apply Rolle's theorem again using $f^{\prime}(x)$ in the interval $\left[c_{1}, c_{2}\right]$ to obtain a point $c \in\left[c_{1}, c_{2}\right]$ with $f^{\prime \prime}(c)=0$.

A-5. Say a function $f(x)$ has the properties $f^{\prime}(x)=2$ for all $x \in \mathbb{R}$ and $f(1)=2$. Show that $f(x)=2 x$. [Hint: To show that " $A=B$ ", it is often easiest to show that " $A-B=0$ ".]
Solution: Let $g(x)=f(x)-2 x$. Then $g^{\prime}(x)=0$ everywhere. Thus by the Mean Value Theorem $g(x) \equiv$ constant. But $g(1)=0$ so $g(x)=0$ everywhere.

Slight variant. Since $f^{\prime}(x) \equiv 2$, by the Mean Value Theorem, there is a c between 1 and x so that

$$
f(x)-f(1)=f^{\prime}(c)(x-1)=2(x-1), \quad \text { that is } \quad f(x)-2=2(x-1)
$$

Thus, $f(x)=2 x$.

Part B: Four traditional problems, 15 points each [60 points[
B-1. Determine if the series $1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots$ converges or diverges. Please explain your reasoning.

SOLUTION: $\quad 1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\cdots>\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}+\cdots=\frac{1}{2}\left[\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots\right]$, so the series diverges by comparison with the harmonic series.

B-2. Use the definition of the derivative as the limit of a difference quotient to show that if $f(x)=$ $\cos 2 x$, then f is differentiable everywhere and compute its derivative. [You may use that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ and $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=0$.]

Solution:

$$
\begin{aligned}
\frac{\cos 2(x+h)-\cos 2 x}{h} & =\frac{[\cos 2 x \cos 2 h-\sin 2 x \sin 2 h]-\cos 2 x}{h} \\
& =\frac{\cos 2 x(\cos 2 h-1)}{h}-\frac{\sin 2 x \sin 2 h}{h} \\
& =2 \frac{\cos 2 x(\cos 2 h-1)}{2 h}-2 \frac{\sin 2 x \sin 2 h}{2 h} .
\end{aligned}
$$

Now let $h \rightarrow 0$ and use $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ and $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=0$ to see that

$$
\lim _{h \rightarrow 0} \frac{\cos 2(x+h)-\cos 2 x}{h}=0-2 \sin 2 x=-2 \sin 2 x
$$

Thus $\cos 2 x$ is differentiable everywhere and its derivative is $-2 \sin 2 x$.
B-3. Let $f(x)$ have two continuous derivatives in the interval (a, b) and say $f^{\prime \prime}(x) \geq 0$ for all $x \in[a, b]$. Prove that for any x_{0} the graph of $y=f(x)$ lies above its tangent line at $\left(x_{0}, f\left(x_{0}\right)\right)$. [If the equation of the tangent line at x_{0} is $y=g(x)$, then by "lies above" I mean $f(x) \geq g(x)$ for all $x \in[a, b]$.

Solution: The equation of the tangent line at x_{0} is $g(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$.
Method 1. Taylor's Theorem says that there is a c between x_{0} and x so that

$$
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}(c)\left(x-x_{0}\right)^{2} .
$$

Since $f^{\prime \prime}(c) \geq 0$, this shows that $f(x) \geq g(x)$ for all x, that is, the curve lies above its tangent line.

Method 2. If $x>x_{0}$, then there is some $p \in\left(x_{0}, x\right)$ where $f(x)-f\left(x_{0}\right)=f^{\prime}(p)\left(x-x_{0}\right)$. But because $f^{\prime \prime}(x) \geq 0$, we know that $f^{\prime}(p) \geq f^{\prime}\left(x_{0}\right)$. Thus $f(x)-f\left(x_{0}\right) \geq f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$, that is, $f(x) \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$, as desired.
Similarly, If $x \leq x_{0}$, then there is some $q \in\left(x, x_{0}\right)$ where $f\left(x_{0}\right)-f(x)=f^{\prime}(q)\left(x_{0}-x\right)$. Since $f^{\prime}(q) \leq f^{\prime}\left(x_{0}\right)$, then $f\left(x_{0}\right)-f(x) \leq f^{\prime}\left(x_{0}\right)\left(x_{0}-x\right)$, that is, $f(x) \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$, as desired.

B-4. Suppose a function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property that there is a constant $a>0$ so that $f^{\prime}(x) \geq a$ for all $x \in \mathbb{R}$.
a) Show that if $x \geq 0$, then $f(x) \geq f(0)+a x$ while if $x \leq 0$, then $f(x) \leq f(0)+a x$.

Solution: If $x \geq 0$, by the Mean Value Theorem there is a c_{1} in the interval $(0, x)$ where

$$
f(x)-f(0)=f^{\prime}\left(c_{1}\right) x \geq a x, \quad, \text { that is, } \quad f(x) \geq f(0)+a x
$$

Similarly, if $x \leq 0$, by the Mean Value Theorem there is a $c_{2} \in(x, 0)$ where

$$
f(x)-f(0)=f^{\prime}\left(c_{2}\right) x \leq a x, \quad, \text { that is, } \quad f(x) \leq f(0)+a x
$$

b) Show that for every $c \in \mathbb{R}$ there is one (and only one) solution of the equation

$$
f(x)=c
$$

Thus, there are two steps: (i) show the equation has at least one solution and (ii) show that the equation has at most one solution.
[Note The existence of at least one solution may be false if you assume only $f^{\prime}(x)>0$. For example the equation $e^{x}=-1$ has no solution.]
Solution: By part a) we see that as $x \rightarrow+\infty$ then $f(x) \rightarrow+\infty$ and as $x \rightarrow-\infty$ then $f(x) \rightarrow-\infty$ (this was the point for including Part (a)). Thus by the Intermediate Value Theorem for any c there is at least one x such that $f(x)=c$.
Next we show there is at most one such solution. Reasoning by contradiction, say there were two distinct solutions, $x_{1}<x_{2}$. Then $f\left(x_{1}\right)=f\left(x_{2}\right)=c$. But by the Mean Value Theorem there is a point γ between c_{1} and c_{2} where $f\left(x_{2}\right)-f\left(x_{1}\right)=f^{\prime}(\gamma)\left(x_{2}-x_{1}\right)>0$, a contradiction. [This uniqueness part only used $f^{\prime}(x)>0$, not $f^{\prime}(x) \geq a>0$.]

