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Math 202 Exam 2 Jerry L. Kazdan
November 5, 2013 12:00 — 1:20

Directions: Part A has 5 shorter problems (8 points each) while Part B has 4 traditional problems
(15 points each). [100 points total].
To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour
20 minutes. Closed book, no calculators, but you may use one 3 ×5 with notes on both sides.

Part A: Five shorter problems, 8 points each [total: 40 points]

A-1. Give an example of an infinite series
∑

an that converges but does not converge absolutely.
[You do not need to justify your assertion.]

Solution: The alternating harmonic series: 1−
1

2
+

1

3
−

1

4
+

1

5
+ · · ·

A-2. Give an example of a bounded function defined on −2 ≤ x ≤ 2 that is continuous everywhere
except at x = 0. [You do not need to justify your assertion].

Solution: f(x) =

{

0 −2 ≤ x ≤ 0,

1 0 < x ≤ 2.
also f(x) =

{

sin(1/x) x 6= 0,

0 x = 0.
.

The function g(x) = 1/x for x 6= 0 and g(0) = 1 is not an example. Although it is certainly
not continuous at x = 0, it is not bounded – and the problem asks for a bounded function.

A-3. Show that the polynomial p(x) := x6 + x5 − 5 has at least two real zeroes.

Solution: For x near ±∞ , clearly p(x) > 0. Also p(0) = −5. Now apply the intermediate
value theorem to the two intervals x ≤ 0 and x ≥ 0. [One could also have observed that just
as obviously p(±2) > 0 so there are two real roots in the interval −2 < x < 2].

A-4. Let g(x) be any smooth function and let f(x) = (x − 1)(x − 2)(x − 3)g(x). Show there is a
point c ∈ (1, 3) where f ′′(c) = 0.

Solution: By Rolle’s theorem there are points c1 with 1 < c1 < 2 and c2 with 2 < c2 < 3
with f ′(c1) = 0 and f ′(c2) = 0. Apply Rolle’s theorem again using f ′(x) in the interval [c1, c2]
to obtain a point c ∈ [c1, c2] with f ′′(c) = 0.

A-5. Say a function f(x) has the properties f ′(x) = 2 for all x ∈ R and f(1) = 2. Show that
f(x) = 2x . [Hint: To show that “A = B”, it is often easiest to show that “A−B = 0”.]

Solution: Let g(x) = f(x) − 2x . Then g′(x) = 0 everywhere. Thus by the Mean Value
Theorem g(x) ≡ constant. But g(1) = 0 so g(x) = 0 everywhere.

Slight variant. Since f ′(x) ≡ 2, by the Mean Value Theorem, there is a c between 1 and x so
that

f(x)− f(1) = f ′(c)(x− 1) = 2(x− 1), that is f(x)− 2 = 2(x− 1).

Thus, f(x) = 2x .
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Part B: Four traditional problems, 15 points each [60 points[

B-1. Determine if the series 1 +
1

3
+

1

5
+

1

7
+ · · · converges or diverges. Please explain your

reasoning.

Solution: 1 +
1

3
+

1

5
+

1

7
+

1

9
+ · · · >

1

4
+

1

6
+

1

8
+

1

10
+ · · · =

1

2

[

1

2
+

1

3
+

1

4
+

1

5
+ · · ·

]

,

so the series diverges by comparison with the harmonic series.

B-2. Use the definition of the derivative as the limit of a difference quotient to show that if f(x) =
cos 2x , then f is differentiable everywhere and compute its derivative. [You may use that
limθ→0

sin θ

θ
= 1 and limθ→0

1−cos θ

θ
= 0.]

Solution:

cos 2(x+ h)− cos 2x

h
=
[cos 2x cos 2h− sin 2x sin 2h]− cos 2x

h

=
cos 2x(cos 2h− 1)

h
−

sin 2x sin 2h

h

=2
cos 2x(cos 2h− 1)

2h
− 2

sin 2x sin 2h

2h
.

Now let h → 0 and use limθ→0
sin θ

θ
= 1 and limθ→0

1−cos θ

θ
= 0 to see that

lim
h→0

cos 2(x+ h)− cos 2x

h
= 0− 2 sin 2x = −2 sin 2x.

Thus cos 2x is differentiable everywhere and its derivative is −2 sin 2x .

B-3. Let f(x) have two continuous derivatives in the interval (a, b) and say
f ′′(x) ≥ 0 for all x ∈ [a, b] . Prove that for any x0 the graph of y = f(x)
lies above its tangent line at (x0, f(x0)). [If the equation of the tangent
line at x0 is y = g(x), then by “lies above” I mean f(x) ≥ g(x) for all
x ∈ [a, b] .]

Solution: The equation of the tangent line at x0 is g(x) = f(x0) + f ′(x0)(x− x0).

Method 1. Taylor’s Theorem says that there is a c between x0 and x so that

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(c)(x− x0)

2.

Since f ′′(c) ≥ 0, this shows that f(x) ≥ g(x) for all x , that is, the curve lies above its tangent
line.

Method 2. If x > x0 , then there is some p ∈ (x0, x) where f(x) − f(x0) = f ′(p)(x − x0).
But because f ′′(x) ≥ 0, we know that f ′(p) ≥ f ′(x0). Thus f(x) − f(x0) ≥ f ′(x0)(x − x0),
that is, f(x) ≥ f(x0) + f ′(x0)(x− x0), as desired.

Similarly, If x ≤ x0 , then there is some q ∈ (x, x0) where f(x0)− f(x) = f ′(q)(x0 − x). Since
f ′(q) ≤ f ′(x0), then f(x0)− f(x) ≤ f ′(x0)(x0 − x), that is, f(x) ≥ f(x0) + f ′(x0)(x− x0), as
desired.
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B-4. Suppose a function f : R → R has the property that there is a constant a > 0 so that
f ′(x) ≥ a for all x ∈ R .

a) Show that if x ≥ 0, then f(x) ≥ f(0) + ax while if x ≤ 0, then f(x) ≤ f(0) + ax .

Solution: If x ≥ 0, by the Mean Value Theorem there is a c1 in the interval (0, x)
where

f(x)− f(0) = f ′(c1)x ≥ ax, , that is, f(x) ≥ f(0) + ax.

Similarly, if x ≤ 0, by the Mean Value Theorem there is a c2 ∈ (x, 0) where

f(x)− f(0) = f ′(c2)x ≤ ax, , that is, f(x) ≤ f(0) + ax.

b) Show that for every c ∈ R there is one (and only one) solution of the equation

f(x) = c.

Thus, there are two steps: (i) show the equation has at least one solution and (ii) show
that the equation has at most one solution.

[Note The existence of at least one solution may be false if you assume only f ′(x) > 0.
For example the equation ex = −1 has no solution.]

Solution: By part a) we see that as x → +∞ then f(x) → +∞ and as x → −∞ then
f(x) → −∞ (this was the point for including Part (a)). Thus by the Intermediate Value
Theorem for any c there is at least one x such that f(x) = c .

Next we show there is at most one such solution. Reasoning by contradiction, say there
were two distinct solutions, x1 < x2 . Then f(x1) = f(x2) = c . But by the Mean Value
Theorem there is a point γ between c1 and c2 where f(x2)− f(x1) = f ′(γ)(x2 − x1) > 0,
a contradiction. [This uniqueness part only used f ′(x) > 0, not f ′(x) ≥ a > 0.]


