Math 202 Exam 2 Jerry L. Kazdan
November 5, 2013 12:00 — 1:20

DIRECTIONS: Part A has 5 shorter problems (8 points each) while Part B has 4 traditional problems
(15 points each). [100 points total].

To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour
20 minutes. Closed book, no calculators, but you may use one 3 x5 with notes on both sides.

PART A: Five shorter problems, 8 points each [total: 40 points]

A-1. Give an example of an infinite series ) a, that converges but does not converge absolutely.

[You do not need to justify your assertion.]
1 1 1

SOLUTION: The alternating harmonic series: 1 — 5 + 371 + 5 + -

A-2. Give an example of a bounded function defined on —2 < z < 2 that is continuous everywhere
except at x = 0. [You do not need to justify your assertion].

sin(1/x) x #0,
0 z=0.

0 —2<z<0,

also T) =
1 0<z<2. /(@)

SOLUTION: f(z) = {

The function g(z) = 1/z for = # 0 and ¢(0) = 1 is not an example. Although it is certainly
not continuous at x = 0, it is not bounded — and the problem asks for a bounded function.

A-3. Show that the polynomial p(z) := 2® + 2° — 5 has at least two real zeroes.

SOLUTION: For = near +oo, clearly p(z) > 0. Also p(0) = —5. Now apply the intermediate
value theorem to the two intervals x < 0 and x > 0. [One could also have observed that just
as obviously p(£2) > 0 so there are two real roots in the interval —2 < x < 2].

A-4. Let g(x) be any smooth function and let f(z) = (z — 1)(x — 2)(x — 3)g(x). Show there is a
point ¢ € (1, 3) where f”(¢) =0.
SOLUTION: By Rolle’s theorem there are points ¢; with 1 < ¢; < 2 and co with 2 < ¢ < 3
with f/(¢1) =0 and f'(c2) = 0. Apply Rolle’s theorem again using f/(x) in the interval [c1, ¢
to obtain a point ¢ € [c1, ¢o] with f”(¢) = 0.

A-5. Say a function f(z) has the properties f’(z) = 2 for all € R and f(1) = 2. Show that
f(z) = 2x. [HINT: To show that “A = B”, it is often easiest to show that “A — B =07 ]

SoLUuTION:  Let g(z) = f(x) — 2x. Then ¢'(z) = 0 everywhere. Thus by the Mean Value
Theorem g¢(z) = constant. But ¢g(1) =0 so g(z) = 0 everywhere.

Slight variant. Since f/(z) =2, by the Mean Value Theorem, there is a ¢ between 1 and z so
that

flx)—f1) = fl(e)(xz—1)=2(x — 1), that is flz) —2=2(zx—1).
Thus, f(z)=2z.



PART B: Four traditional problems, 15 points each [60 points]

B-1. Determine if the series 1 + 3 + é + 7 + --- converges or diverges. Please explain your
reasoning.
SOLUTION: 1+1+1+1+1+ >1+1+1+i+ 1 1+1+1+1+...
3 5 79 4 6 8 10 212 3 4 5

so the series diverges by comparison with the harmonic series.

B-2. Use the definition of the derivative as the limit of a difference quotient to show that if f(z) =

cos2z, then f is differentiable everywhere and compute its derivative. [You may use that

limg_sg Sige =1 and limgy_ % =0.]

SOLUTION:

cos2(xz + h) —cos2x  [cos 2z cos 2h — sin 2x sin 2h] — cos 2

h h
_ cos2w(cos2h — 1)  sin2zsin2h
- h - h
508 2z(cos2h —1) 2sin 2z sin 2h'
2h 2h

Now let h — 0 and use limg_sq Sige =1 and limy_ l_f,%ose =0 to see that

2z + h) — cos 2
i CO52(@ HR) meos2r oy o gin2
h—0 h

Thus cos 2z is differentiable everywhere and its derivative is —2sin 2z.

B-3. Let f(z) have two continuous derivatives in the interval (a, b) and say
f"(x) >0 for all x € [a, b]. Prove that for any x¢ the graph of y = f(x)
lies above its tangent line at (xg, f(zo)). [If the equation of the tangent
line at zp is y = g(z), then by “lies above” I mean f(z) > g(x) for all
x € [a, ] .]
SOLUTION: The equation of the tangent line at xq is g(z) = f(xo) + f'(z0)(x — x0).

MEeTHOD 1. Taylor’s Theorem says that there is a ¢ between zy and x so that

(@) = f(zo) + f'(x0)(x — wo) + 5.f"(c)(x — z0)*.

Since f”(¢) > 0, this shows that f(z) > g(x) for all x, that is, the curve lies above its tangent
line.

METHOD 2. If z > xg, then there is some p € (xg, ) where f(z) — f(zo) = f'(p)(z — x0).
But because f”(x) > 0, we know that f'(p) > f'(x0). Thus f(z) — f(xo) > f'(x0)(z — x0),
that is, f(z) > f(xo) + f'(x0)(x — x0), as desired.

Similarly, If x < zg, then there is some ¢ € (z, xg) where f(xg) — f
>

f'(q) < f'(x0), then f(zo) — f(z) < f'(x0)(x0 — x), that is, f(z)

desired.

(2) = £'(q)(xo —x). Since
F(w0) + f'(@o)(@ — xo), as



B-4. Suppose a function f : R — R has the property that there is a constant a > 0 so that
f'(z) > a for all z € R.

a)

Show that if x > 0, then f(z) > f(0) + ax while if x <0, then f(z) < f(0) + ax.

SoLuTIiON: If x > 0, by the Mean Value Theorem there is a ¢; in the interval (0, )
where
f@) = f(0) = f(e)z > ax, , thatis, f(z) = f(0) + az.

Similarly, if z <0, by the Mean Value Theorem there is a c2 € (z, 0) where
f(x) = £(0) = f'(c2)x < aw, ,thatis, f(z)< f(0)+ax.
Show that for every ¢ € R there is one (and only one) solution of the equation

f(z)=c.

Thus, there are two steps: (i) show the equation has at least one solution and (ii) show
that the equation has at most one solution.

[NOTE The existence of at least one solution may be false if you assume only f’(z) > 0.
For example the equation e* = —1 has no solution. |

SOLUTION: By part a) we see that as © — +oo then f(z) — +o0o and as * — —oo then
f(z) — —oo (this was the point for including Part (a)). Thus by the Intermediate Value
Theorem for any c¢ there is at least one z such that f(x) = c.

Next we show there is at most one such solution. Reasoning by contradiction, say there
were two distinct solutions, x1 < xg. Then f(x1) = f(xz2) = ¢. But by the Mean Value
Theorem there is a point v between ¢; and ¢ where f(z2) — f(z1) = f'(y)(x2 —21) > 0,
a contradiction. [This uniqueness part only used f’(z) > 0, not f'(z) >a > 0.]



