Directions: Part A has 5 shorter problems (8 points each) while Part B has 4 traditional problems (15 points each). [100 points total].
To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3×5 with notes on both sides.
Part A: Five shorter problems, 8 points each [total: 40 points]
A-1. Give an example of an infinite series $\sum a_{n}$ that converges but does not converge absolutely. [You do not need to justify your assertion.]

A-2. Give an example of a bounded function defined on $-2 \leq x \leq 2$ that is continuous everywhere except at $x=0$. [You do not need to justify your assertion].

A-3. Show that the polynomial $p(x):=x^{6}+x^{5}-5$ has at least two real zeroes.

A-4. Let $g(x)$ be any smooth function and let $f(x)=(x-1)(x-2)(x-3) g(x)$. Show there is a point $c \in(1,3)$ where $f^{\prime \prime}(c)=0$.

A-5. Say a function $f(x)$ has the properties $f^{\prime}(x)=2$ for all $x \in \mathbb{R}$ and $f(1)=2$. Show that $f(x)=2 x$. [Hint: To show that " $A=B$ ", it is often easiest to show that " $A-B=0$ ".]

Part B: Four traditional problems, 15 points each [60 points[
B-1. Determine if the series $1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots$ converges or diverges. Please explain your reasoning.

B-2. Use the definition of the derivative as the limit of a difference quotient to show that if $f(x)=$ $\cos 2 x$, then f is differentiable everywhere and compute its derivative. [You may use that $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ and $\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=0$.]

B-3. Let $f(x)$ have two continuous derivatives in the interval (a, b) and say $f^{\prime \prime}(x) \geq 0$ for all $x \in[a, b]$. Prove that for any x_{0} the graph of $y=f(x)$ lies above its tangent line at $\left(x_{0}, f\left(x_{0}\right)\right)$. [If the equation of the tangent line at x_{0} is $y=g(x)$, then by "lies above" I mean $f(x) \geq g(x)$ for all $x \in[a, b]$.]

[CONTINUED ON NEXT PAGE]

B-4. Suppose a function $f: \mathbb{R} \rightarrow \mathbb{R}$ has the property that there is a constant $a>0$ so that $f^{\prime}(x) \geq a$ for all $x \in \mathbb{R}$.
a) Show that if $x \geq 0$, then $f(x) \geq f(0)+a x$ while if $x \leq 0$, then $f(x) \leq f(0)+a x$.
b) Show that for every $c \in \mathbb{R}$ there is one (and only one) solution of the equation

$$
f(x)=c .
$$

Thus, there are two steps: (i) show the equation has at least one solution and (ii) show that the equation has at most one solution.
[NOTE The existence of at least one solution may be false if you assume only $f^{\prime}(x)>0$. For example the equation $e^{x}=-1$ has no solution.]

