DIRECTIONS: Part A has 6 shorter problems (8 points each) while Part B has 4 traditional problems (13 points each). 100 points total. To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3 ×5 with notes on both sides.

PART A: Six shorter problems, 8 points each [total: 48 points]

A-1. Say a function \(f(x) \) has the properties \(f'(x) = 2 \cos 2x \) for all \(x \in \mathbb{R} \) and \(f(0) = 0 \). Show that \(f(x) = \sin 2x \). [HINT: To show that “\(A = B \)”, it is often easiest to show that “\(A - B = 0 \)”.]

A-2. Find the continuous function \(f \) and constant \(C \) so that \(\int_1^x f(t) \, dt = x \cos(\pi x) + C \).

A-3. Give an example of a bounded continuous function \(f(x) \), \(x \in \mathbb{R} \), that does not attain its supremum. A clear sketch is adequate.

A-4. Let \(a_n \) be a sequence of real numbers that converges to \(A \). If \(a_n \geq 0 \), give a clear proof that \(A \geq 0 \).

A-5. Give an example of a sequence, \(f_n(x) \), of functions on the interval \([0, 1]\) that converge pointwise to 0 but do not converge uniformly. A good sketch is adequate.

A-6. Let \(p(x) = x^9 + a_8x^8 + \cdots + a_1x + a_0 \). Prove (clearly) that \(\lim_{x \to -\infty} p(x) = -\infty \).

PART B: Four traditional problems, 13 points each [52 points]

B-1. Let \(f(x) \) and \(g(x) \) be differentiable for \(x \in [a, b] \) and let \(p \in (a, b) \). Show directly from the definition of the derivative that the product, \(f(x)g(x) \), is differentiable at the point \(p \) and the derivative is given by the usual rule: \((fg)'(p) = f'(p)g(p) + f(p)g'(p) \).

B-2. Let \(f \) be a continuous function on the interval \([a, b]\). If \(\int_a^b f(x) \, dx = 0 \), show there is a point \(c \in (a, b) \) so that \(f(c) = 0 \).

B-3. Let \(I_k = \{ x \in \mathbb{R} | a_k \leq x \leq b_k \} \) be closed bounded nested intervals, so \(I_{k+1} \subseteq I_k \).

a) Use the completeness property of the real numbers (“bounded monotone sequences converge”) to show that there is at least one point in the intersection, \(\cap I_k \).
b) Give an example where the intersection is the *whole* interval $-1 \leq x \leq 1$.

B-4. Let $f(x)$ be continuous on the interval $[0, 1]$ and $g_n(x)$ be the sequence of functions in the figure. Show that

$$\lim_{n \to \infty} \int_0^1 f(x)g_n(x) \, dx = f(0).$$

Suggestion First do the case where $f(x) \equiv 1$.

![Diagram](image-url)