Math 202
January 22, 2014

Exam 3 (Make-up)

Directions: Part A has 6 shorter problems (8 points each) while Part B has 4 traditional problems (13 points each). 100 points total].
To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3×5 with notes on both sides.

Part A: Six shorter problems, 8 points each [total: 48 points]

A-1. If two differentiable functions on the interval $(0,1)$ have the same derivative, prove that they differ by a constant.

Score	
A-1	
A-2	
A-3	
A-4	
A-5	
A-6	
B-1	
B-2	
B-3	
B-4	
Total	

A-2. Find the continuous function f and constant C so that $\int_{0}^{x} f(t) d t=e^{\cos x}+C$.

A-3. Let $\left\{c_{n}\right\}$ be a sequence of (possible complex) numbers. If the series $\sum_{n=1}^{\infty} c_{n}$ converges, show that $c_{n} \rightarrow 0$.

A-4. Let a_{n} be a sequence of real numbers that converges to A. If $a_{n} \leq 1$, give a clear proof that $A \leq 1$.

A-5. Give an example of a sequence, $f_{n}(x)$, of continuous functions on the interval $[0,1]$ that converge pointwise to some function $g(x)$ but do not converge uniformly. A good sketch is adequate.

A-6. Give a (clear) proof that $\lim _{t \rightarrow \infty} \frac{3 t^{4}-2 t^{3}+5}{2 t^{4}+5}=\frac{3}{2}$

Part B: Four traditional problems, 13 points each [52 points[
B-1. Let $f(x)=x^{3}$ and P_{n} be a partition of the interval [0, 2] into n intervals of equal length. Find a number n to insure that the upper Riemann sum $U\left(f, P_{n}\right)$ is within .01 of $\int_{0}^{2} x^{3} d x$.

B-2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and let a be a positive real number. Show that the function

$$
G(x):=\int_{-a}^{a} f(x+t) d t
$$

is differentiable and has a continuous derivative and compute $G^{\prime}(x)$. [SUGGESTION: Make a preliminary change of variable.]

B-3. Let a_{n} be a sequence of real numbers that converges to zero, $a_{n} \rightarrow 0$ as n goes to infinity. Show that

$$
\lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=0
$$

B-4. Let $f(x)$ be continuous on the interval $[-1,1]$ and $g_{n}(x)$ be the sequence of functions in the figure. Show that

$$
\lim _{n \rightarrow \infty} \int_{-1}^{1} f(x) g_{n}(x) d x=f(0)
$$

Suggestion First do the case where $f(x) \equiv 1$.

