Directions: Part A has 6 shorter problems (8 points each) while Part B has 4 traditional problems (13 points each). 100 points total].
To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3×5 with notes on both sides.

Part A: Six shorter problems, 8 points each [total: 48 points]

A-1. Say a function $f(x)$ has the properties $f^{\prime}(x)=2 \cos 2 x$ for all $x \in \mathbb{R}$ and $f(0)=0$. Show that $f(x)=\sin 2 x$. [Hint: To show that " $A=B$ ", it is often easiest to show that " $A-B=0$ ".]

Solution:
Method 1. Let $g(x):=f(x)-\sin 2 x$. Then $g^{\prime}(x)=f^{\prime}(x)-2 \cos 2 x=0$. Thus by the Mean Value Theorem $g(x) \equiv$ constant. But $g(0)=f(0)-0=0$ so $g(x) \equiv 0$.
Method 2. By the Fundamental Theorem of Calculus

$$
f(x)=f(0)+\int_{0}^{x} f^{\prime}(t) d t=0+\int_{0}^{x} 2 \cos 2 t d t=\sin 2 x .
$$

A-2. Find the continuous function f and constant C so that $\int_{1}^{x} f(t) d t=x \cos (\pi x)+C$.
Solution: Let $x=0$ to find $0=1 \cdot \cos \pi+C=-1+C$ so $C=1$.
Take the derivative of both sides. By the Fundamental Theorem of Calculus

$$
f(x)=\cos (\pi x)-\pi x \sin (\pi x) .
$$

Note that Method 1 is more fundamental since to prove this version of the Fundamental Theorem of Calculus you use exactly the approach of Method 1.

A-3. Give an example of a bounded continuous function $f(x), x \in \mathbb{R}$, that does not attain its supremum. A clear sketch is adequate.
EXAMPLES: $\quad y=\frac{x^{2}}{1+x^{2}} \quad$ and $\quad y=\arctan x$

As $x \rightarrow+\infty$: in the left example, $y \nearrow 1$, while in the right example $y \nearrow \pi / 2$.

A-4. Let a_{n} be a sequence of real numbers that converges to A. If $a_{n} \geq 0$, give a clear proof that $A \geq 0$.

Solution: Given any $\varepsilon>0$, pick n so large that $\left|a_{n}-A\right|<\varepsilon$. Therefore $a_{n}-A<\varepsilon$. That is, $a_{n}-\varepsilon<A$. But $a_{n} \geq 0$. Thus $-\varepsilon<A$. Since ε can be chosen as small as you wish, the only possibility is $0 \leq A$.

A- 5 . Give an example of a sequence, $f_{n}(x)$, of functions on the interval $[0,1]$ that converge pointwise to 0 but do not converge uniformly. A good sketch is adequate.

Solution:

If you prefer formulas, another continuous example is $f_{n}(x)=n^{2} x^{n}(1-x)$ for $0 \leq x \leq 1$, but this is more complicated to see. The above sketch is simpler.
A discontinuous example is to let $f_{n}(x):=x^{n}$ for $0 \leq x<1$ but $f_{n}(1)=0$. Note for each $n \geq 0$, that $\sup _{x \in[0,1]} f_{n}(x)=1$.

A-6. Let $p(x)=x^{9}+a_{8} x^{8}+\cdots+a_{1} x+a_{0}$. Prove (clearly) that $\lim _{x \rightarrow-\infty} p(x)=-\infty$.
Solution: For $x \neq 0$

$$
p(x)=x^{9}\left[1+\frac{a_{8}}{x}+\frac{a_{7}}{x^{2}}+\cdots \frac{a_{1}}{x^{8}}+\frac{a_{0}}{x^{9}}\right] .
$$

In the limit as $x \rightarrow-\infty$, the term in brackets $\left[1+\frac{a_{8}}{x}+\cdots\right]$ converges to 1 while $x^{9} \rightarrow-\infty$.

Part B: Four traditional problems, 13 points each [52 points[
B-1. Let $f(x)$ and $g(x)$ be differentiable for $x \in[a, b]$ and let $p \in(a, b)$. Show directly from the definition of the derivative that the product, $f(x) g(x)$, is differentiable at the point p and the derivative is given by the usual rule: $(f g)^{\prime}(p)=f^{\prime}(p) g(p)+f(p) g^{\prime}(p)$.

Solution:

$$
\begin{aligned}
\frac{f(x+h) g(x+h)-f(x) g(x)}{h} & =\frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
& =\left[\frac{f(x+h)-f(x)}{h}\right] g(x+h)+f(x)\left[\frac{g(x+h)-g(x)}{h}\right]
\end{aligned}
$$

Now let $h \rightarrow 0$.

B-2. Let f be a continuous function on the interval $[a, b]$. If $\int_{a}^{b} f(x) d x=0$, show there is a point $c \in(a, b)$ so that $f(c)=0$.

Solution:
Method 1. By contradiction, if $f(x) \neq 0$ for any $x \in(a, b)$ then because f is continuous, by the Intermediate Value Theorem either $f(x)>0$ for all $x \in(a, b)$ or $f(x)<0$ for all $x \in(a, b)$. But then either $\int_{0}^{1} f(x) d x>0$ or $\int_{0}^{1} f(x) d x<0$, a contradiction.
Same idea but alternate wording: Let $m=\inf _{x \in[a, b]} f(x)$ and $M=\sup _{x \in[a, b]} f(x)$. Then

$$
\begin{equation*}
m(b-a) \leq \int_{a}^{b} f(x) d x \leq M(b-a), \quad \text { so } \quad m \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq M \tag{1}
\end{equation*}
$$

Because f is continuous on $[a, b]$ there are points x_{m} and x_{M} in $[a, b]$ where $f\left(x_{m}\right)=m$ and $f\left(x_{M}\right)=M$. By the intermediate value theorem, there are points where f takes oh all values between m and M. Thus, by equation (1) there is a point $c \in[a, b]$ where $f(c)=$ $\frac{1}{b-a} \int_{a}^{b} f(x) d x=0$.
Method 2. For $t \in[a, b]$, let $g(t)=\int_{a}^{t} f(x) d x$. Then $g(a)=g(b)=0$. Also, by the Fundamental Theorem of Calculus, $g(t)$ is differentiable for $t \in(a, b)$ and $g^{\prime}(t)=f(t)$ (this uses that f is continuous). By Rolle's Theorem there is at least one $c \in(a, b)$ where $g^{\prime}(c)=0$. But then $f(c)=0$.
Remarks: If f is not required to be continuous, a simple counterexample on the interval $[-1,1]$ is where $f(x)=-1$ for $x \in[-1,0)$ while $f(x)=1$ for $x \in[0,1]$.
Method 1 also proves the following generalization: Let $p(x) \geq 0$ be any integrable function and let $P:=\int_{a}^{b} p(x) d x$. Assume $P \neq 0$. Then there is a point c where $f(c)=\frac{1}{P} \int_{a}^{b} f(x) p(x) d x$. Intuitively you can think of $d \mu:=p(x) d x$ as the element of mass and P as the total mass. [If $P=0$ the problem is trivial].

B-3. Let $I_{k}=\left\{x \in \mathbb{R} \mid a_{k} \leq x \leq b_{k}\right\}$ be closed bounded nested intervals, that is, $I_{k+1} \subseteq I_{k}$.
a) Use the completeness property of the real numbers ("bounded monotone sequences converge") to show that there is at least one point in the intersection, $\cap I_{k}$.
Solution: Since the intervals are nested, $a_{k} \leq a_{k+1}$ and $b_{k+1} \leq b_{k}$. Also $a_{k} \leq b_{k} \leq b_{1}$ and $b_{k} \geq a_{k} \geq a_{1}$. The a_{k} are therefore a bounded monotone increasing sequence that converges to some A and similarly the b_{k} are a bounded monotone decreasing sequence that converges to some $B \leq A$. Thus $\cap I_{k}=[A, B]$.
b) Give an example where the intersection is the whole interval $-1 \leq x \leq 1$.

Solution: Example 1: $I_{k}=\left[-1-\frac{1}{n}, 1+\frac{1}{n}\right]$. Example 2: The trivial example $I_{1}=$ $I_{2}=\cdots=[-1,1]$.

B-4. Let $f(x)$ be continuous on the interval $[0,1]$ and $g_{n}(x)$ be the sequence of functions in the figure. Show that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f(x) g_{n}(x) d x=f(0)
$$

Suggestion First do the case where $f(x) \equiv 1$.

Solution: Idea: since $\int_{0}^{1} f(x) g_{n}(x) d x=\int_{0}^{2 / n} f(x) g_{n}(x) d x$ the only values of f that matter are those in the small interval $0 \leq x \leq 2 / n$ near $x=0$. Also, if $h(x) \equiv 1$, then $\int_{0}^{1} h(x) g_{n}(x) d x=\int_{0}^{1} g_{n}(x) d x=1$. Thus

$$
\begin{equation*}
\int_{0}^{1} f(x) g_{n}(x) d x-f(0)=\int_{0}^{2 / n}[f(x)-f(0)] g_{n}(x) d x \tag{2}
\end{equation*}
$$

Because f is continuous, given any $\varepsilon>0$, there is a $\delta>0$ so that if $|x-0|<\delta$, then $|f(x)-f(0)|<\varepsilon$. Pick n so large that $2 / n \leq \delta$. Then

$$
\left|\int_{0}^{2 / n}[f(x)-f(0)] g_{n}(x) d x\right| \leq \int_{0}^{2 / n}|f(x)-f(0)| g_{n}(x) d x<\varepsilon \int_{0}^{2 / n} g_{n}(x) d x=\varepsilon .
$$

Using this in equation (2) the conclusion follows.

REMARK: The identical reasoning works for

