
Math 202 Exam 3 Jerry L. Kazdan
December 10, 2013 12:00 — 1:20

Directions: Part A has 6 shorter problems (8 points each) while Part B has 4 traditional problems
(13 points each). 100 points total].
To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour
20 minutes. Closed book, no calculators, but you may use one 3 ×5 with notes on both sides.

Part A: Six shorter problems, 8 points each [total: 48 points]

A-1. Say a function f(x) has the properties f ′(x) = 2 cos 2x for all x ∈ R and f(0) = 0. Show that
f(x) = sin 2x . [Hint: To show that “A = B”, it is often easiest to show that “A − B = 0”.]

Solution:

Method 1. Let g(x) := f(x) − sin 2x . Then g′(x) = f ′(x) − 2 cos 2x = 0. Thus by the Mean
Value Theorem g(x) ≡constant. But g(0) = f(0) − 0 = 0 so g(x) ≡ 0.

Method 2. By the Fundamental Theorem of Calculus

f(x) = f(0) +

∫ x

0
f ′(t) dt = 0 +

∫ x

0
2 cos 2t dt = sin 2x.

A-2. Find the continuous function f and constant C so that

∫ x

1
f(t) dt = x cos(πx) + C .

Solution: Let x = 0 to find 0 = 1 · cos π + C = −1 + C so C = 1.

Take the derivative of both sides. By the Fundamental Theorem of Calculus

f(x) = cos(πx) − πx sin(πx).

Note that Method 1 is more fundamental since to prove this version of the Fundamental The-
orem of Calculus you use exactly the approach of Method 1.

A-3. Give an example of a bounded continuous function f(x), x ∈ R , that does not attain its
supremum. A clear sketch is adequate.

Examples: y =
x2

1 + x2
and y = arctanx

As x → +∞ : in the left example, y ր 1, while in the right example y ր π/2.
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A-4. Let an be a sequence of real numbers that converges to A . If an ≥ 0, give a clear proof that
A ≥ 0.

Solution: Given any ε > 0, pick n so large that |an −A| < ε . Therefore an −A < ε . That
is, an − ε < A . But an ≥ 0. Thus −ε < A . Since ε can be chosen as small as you wish, the
only possibility is 0 ≤ A .

A-5. Give an example of a sequence, fn(x), of functions on the interval [0, 1] that converge point-
wise to 0 but do not converge uniformly. A good sketch is adequate.

Solution:

x
2/n 1

f (x)1
n

If you prefer formulas, another continuous example is fn(x) = n2xn(1 − x) for 0 ≤ x ≤ 1, but
this is more complicated to see. The above sketch is simpler.

A discontinuous example is to let fn(x) := xn for 0 ≤ x < 1 but fn(1) = 0. Note for each
n ≥ 0, that supx∈[0,1] fn(x) = 1.

A-6. Let p(x) = x9 + a8x
8 + · · · + a1x + a0 . Prove (clearly) that lim

x→−∞

p(x) = −∞ .

Solution: For x 6= 0

p(x) = x9
[

1 +
a8

x
+

a7

x2
+ · · ·

a1

x8
+

a0

x9

]

.

In the limit as x → −∞ , the term in brackets [1 + a8

x + · · · ] converges to 1 while x9 → −∞ .

Part B: Four traditional problems, 13 points each [52 points[

B-1. Let f(x) and g(x) be differentiable for x ∈ [a, b] and let p ∈ (a, b). Show directly from the
definition of the derivative that the product, f(x)g(x), is differentiable at the point p and the
derivative is given by the usual rule: (fg)′(p) = f ′(p)g(p) + f(p)g′(p).

Solution:

f(x + h)g(x + h) − f(x)g(x)

h
=

f(x + h)g(x + h) − f(x)g(x + h) + f(x)g(x + h) − f(x)g(x)

h

=

[

f(x + h) − f(x)

h

]

g(x + h) + f(x)

[

g(x + h) − g(x)

h

]

Now let h → 0.
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B-2. Let f be a continuous function on the interval [a, b] . If

∫ b

a
f(x) dx = 0, show there is a point

c ∈ (a, b) so that f(c) = 0.

Solution:

Method 1. By contradiction, if f(x) 6= 0 for any x ∈ (a, b) then because f is continuous,
by the Intermediate Value Theorem either f(x) > 0 for all x ∈ (a, b) or f(x) < 0 for all

x ∈ (a, b). But then either
∫ 1
0 f(x) dx > 0 or

∫ 1
0 f(x) dx < 0, a contradiction.

Same idea but alternate wording: Let m = infx∈[a, b] f(x) and M = supx∈[a, b] f(x). Then

m(b − a) ≤

∫ b

a
f(x) dx ≤ M(b − a), so m ≤

1

b − a

∫ b

a
f(x) dx ≤ M. (1)

Because f is continuous on [a, b] there are points xm and xM in [a, b] where f(xm) = m
and f(xM ) = M . By the intermediate value theorem, there are points where f takes oh all
values between m and M . Thus, by equation (1) there is a point c ∈ [a, b] where f(c) =

1
b−a

∫ b
a f(x) dx = 0.

Method 2. For t ∈ [a, b] , let g(t) =

∫ t

a
f(x) dx . Then g(a) = g(b) = 0. Also, by the

Fundamental Theorem of Calculus, g(t) is differentiable for t ∈ (a, b) and g′(t) = f(t) (this
uses that f is continuous). By Rolle’s Theorem there is at least one c ∈ (a, b) where g′(c) = 0.
But then f(c) = 0.

Remarks: If f is not required to be continuous, a simple counterexample on the interval
[−1, 1] is where f(x) = −1 for x ∈ [−1, 0) while f(x) = 1 for x ∈ [0, 1].

Method 1 also proves the following generalization: Let p(x) ≥ 0 be any integrable function and

let P :=
∫ b
a p(x) dx . Assume P 6= 0. Then there is a point c where f(c) = 1

P

∫ b
a f(x)p(x) dx .

Intuitively you can think of dµ := p(x) dx as the element of mass and P as the total mass. [If
P = 0 the problem is trivial].

B-3. Let Ik = {x ∈ R | ak ≤ x ≤ bk} be closed bounded nested intervals, that is, Ik+1 ⊆ Ik .

a) Use the completeness property of the real numbers (“bounded monotone sequences con-
verge”) to show that there is at least one point in the intersection, ∩Ik .

Solution: Since the intervals are nested, ak ≤ ak+1 and bk+1 ≤ bk . Also ak ≤ bk ≤ b1

and bk ≥ ak ≥ a1 . The ak are therefore a bounded monotone increasing sequence that
converges to some A and similarly the bk are a bounded monotone decreasing sequence
that converges to some B ≤ A . Thus ∩Ik = [A, B] .

b) Give an example where the intersection is the whole interval −1 ≤ x ≤ 1.

Solution: Example 1: Ik = [−1 − 1
n , 1 + 1

n ] . Example 2: The trivial example I1 =
I2 = · · · = [−1, 1].
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B-4. Let f(x) be continuous on the interval [0, 1] and gn(x) be
the sequence of functions in the figure. Show that

lim
n→∞

∫ 1

0
f(x)gn(x) dx = f(0).

Suggestion First do the case where f(x) ≡ 1. x

n

2/n 1

g (x)n

Solution: Idea: since
∫ 1
0 f(x)gn(x) dx =

∫ 2/n
0 f(x)gn(x) dx the only values of f that mat-

ter are those in the small interval 0 ≤ x ≤ 2/n near x = 0. Also, if h(x) ≡ 1, then
∫ 1
0 h(x)gn(x) dx =

∫ 1
0 gn(x) dx = 1. Thus

∫ 1

0
f(x)gn(x) dx − f(0) =

∫ 2/n

0
[f(x) − f(0)] gn(x) dx. (2)

Because f is continuous, given any ε > 0, there is a δ > 0 so that if |x − 0| < δ , then
|f(x) − f(0)| < ε . Pick n so large that 2/n ≤ δ . Then

∣

∣

∣

∣

∣

∫ 2/n

0
[f(x) − f(0)] gn(x) dx

∣

∣

∣

∣

∣

≤

∫ 2/n

0
|f(x) − f(0)| gn(x) dx < ε

∫ 2/n

0
gn(x) dx = ε.

Using this in equation (2) the conclusion follows.

Remark: The identical reasoning works for

x
2/n 1

g (x)n
−n
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