Math 202 Exam 3 Jerry L. Kazdan
December 10, 2013 12:00 — 1:20

DIRECTIONS: Part A has 6 shorter problems (8 points each) while Part B has 4 traditional problems
(13 points each). 100 points total].

To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour
20 minutes. Closed book, no calculators, but you may use one 3 x5 with notes on both sides.

PART A: Six shorter problems, 8 points each [total: 48 points]

A-1. Say a function f(x) has the properties f’(x) = 2cos2z for all z € R and f(0) = 0. Show that
f(z) =sin2x. [HINT: To show that “A = B”, it is often easiest to show that “A — B =0"]

SOLUTION:

Method 1. Let g(z) := f(x) —sin2z. Then ¢'(x) = f'(x) — 2cos2z = 0. Thus by the Mean
Value Theorem g(z) =constant. But ¢(0) = f(0) —0 =10 so g(x) = 0.

Method 2. By the Fundamental Theorem of Calculus

F@) = £(0) +/0x £ dt = 0+/0x2cos2tdt: in 22

x
A-2. Find the continuous function f and constant C' so that / f(t)dt = xcos(mx) + C.
1

SOLUTION: Let =0 tofind 0=1-cosmr+C =—-14+Cso C=1.
Take the derivative of both sides. By the Fundamental Theorem of Calculus

f(x) = cos(mz) — mxsin(mz).

Note that Method 1 is more fundamental since to prove this version of the Fundamental The-
orem of Calculus you use exactly the approach of Method 1.

A-3. Give an example of a bounded continuous function f(z), x € R, that does not attain its
supremum. A clear sketch is adequate.

x2

EXAMPLES: =
Y 14 22

and y = arctanx

As x — 4o00: in the left example, y ' 1, while in the right example y " 7/2.



A-4. Let a, be a sequence of real numbers that converges to A. If a, > 0, give a clear proof that
A>0.

SOLUTION: Given any € > 0, pick n so large that |a, — A| < . Therefore a,, — A < e. That
is, a, —e < A. But a, > 0. Thus —¢ < A. Since € can be chosen as small as you wish, the
only possibility is 0 < A.

A-5. Give an example of a sequence, f,(x), of functions on the interval [0, 1] that converge point-
wise to 0 but do not converge uniformly. A good sketch is adequate.

SOLUTION:

1 f (%)

X

2/n 1

If you prefer formulas, another continuous example is f, () = n22"(1 —z) for 0 < x < 1, but
this is more complicated to see. The above sketch is simpler.

A discontinuous example is to let f,(z) := 2™ for 0 <z < 1 but f,(1) = 0. Note for each
n >0, that sup,cpq) fu(2) = 1.
A-6. Let p(z) = 2% + aga® + -+ + a1w + ag. Prove (clearly) that lim p(z) = —oo.
T——00
SoLUTION: For z # 0
9 asg | ar a1 ao}
g 1 — _ [ p— — .
p(z) x[+:p+x2+ gl

In the limit as © — —oo, the term in brackets [1 4 9 + --.] converges to 1 while 27 — —o0.

PART B: Four traditional problems, 13 points each [52 points]

B-1. Let f(x) and g(z) be differentiable for x € [a, b] and let p € (a, b). Show directly from the
definition of the derivative that the product, f(z)g(x), is differentiable at the point p and the

derivative is given by the usual rule: (fg) (p) = f'(p)g(p) + f(p)g (p).

SOLUTION:
fle+h)gle+h) - fx)g(x) _flz+h)glx+h) - f@)g(z+h)+ f(z)g(z +h) — fx)g(x)
h h
Now let h — 0.



B-2.

B-3.

Let f be a continuous function on the interval [a, b]. If / f(z)dx = 0, show there is a point
¢ € (a, b) so that f(c) = ‘
SOLUTION:

Method 1. By contradiction, if f(z) # 0 for any x € (a, b) then because f is continuous,
by the Intermediate Value Theorem either f(x ) > 0 for all = € (a,b) or f(z) < 0 for all
€ (a, b). But then either fo x)dr >0 or fo r)dr < 0, a contradiction.

Same idea but alternate wording: Let m = inf,¢[, 3 f(2) and M = sup,¢(, 4 f(2). Then

b
m(b—a)g/f(x)da;SM(b—a), so mgb/f )dx < M. (1)
. —
Because f is continuous on [a, b] there are points z,, and xps in [a, b] where f(z,,) = m
and f(zp;) = M. By the intermediate value theorem, there are points where f takes oh all
values between m and M. Thus, by equation (1) there is a point ¢ € [a, b] where f(c) =

%afabf(ar) dr = 0.
t

Method 2. For t € [a, b], let g(t) = / f(z)dx. Then g(a) = g(b) = 0. Also, by the

9(
Fundamental Theorem of Calculus, g(t) is differentiable for ¢ € (a, b) and ¢'(t) = f(t) (this
uses that f is continuous). By Rolle’s Theorem there is at least one ¢ € (a, b) where ¢'(¢) = 0.
But then f(c) =

REMARKS: If f is not required to be continuous, a simple counterexample on the interval
[—1, 1] is where f(z) = —1 for z € [-1, 0) while f(z) =1 for z € [0, 1].
Method 1 also proves the following generalization: Let p(z) > 0 be any integrable function and

let P:= f;p( dr. Assume P # 0. Then there is a point ¢ where f(c) = & f f(z
Intuitively you can think of du := p(x) dx as the element of mass and P as the total mass. [If
P = 0 the problem is trivial].

Let Iy = {z € R|ar < x < b} be closed bounded nested intervals, that is, Iy C If.

a) Use the completeness property of the real numbers (“bounded monotone sequences con-
verge”) to show that there is at least one point in the intersection, NIj.

SOLUTION: Since the intervals are nested, ax < agy1 and bpi1 < bg. Also ap < by < by
and by > ar > a1. The aj are therefore a bounded monotone increasing sequence that
converges to some A and similarly the b are a bounded monotone decreasing sequence
that converges to some B < A. Thus NI = [A, B].

b) Give an example where the intersection is the whole interval —1 < x < 1.

SoLuTioN: Example 1: I, = [-1— 1, 1+ 1], Example 2: The trivial example I; =
Iy=---=[-1,1].



B-4. Let f(x) be continuous on the interval [0, 1] and g, (z) be
the sequence of functions in the figure. Show that n gr(X)

1
lim [ f(z)gn(z)dx = f(0).

n—oo 0

SUGGESTION First do the case where f(z)=1.

2/n 1

SOLUTION: Idea: since fol f(x)gn(x)dx = f02/n f(z)gn(x)dx the only values of f that mat-
ter are those in the small interval 0 < x < 2/n near x = 0. Also, if h(z) = 1, then
fol h(z)gn(z)de = fol gn(z)dxr = 1. Thus

1 2/n
/ F(2)gn () dx — £(0) = / (@) — £(0)) gnla) do. )
0 0

Because f is continuous, given any ¢ > 0, there is a 6 > 0 so that if |z — 0] < J, then
|f(x) — f(0)] < e. Pick n so large that 2/n < §. Then

2/n 2/n 2/n
| @) = sl @y de| < [ 170~ sl ey do <2 [ guterdo =<,

Using this in equation (2) the conclusion follows.

n —

9,4¥)
REMARK: The identical reasoning works for
X
2/n 1




