1.39. Definition. Field Axioms. A set S with operations + and \cdot and distinguished elements 0 and 1 with $0 \neq 1$ is a **field** if the following properties hold for all $x, y, z \in S$. A0: $x + y \in S$ M0: $x \cdot y \in S$ Closure

M3: $x \cdot 1 = x$

multiplicative identity element.

M4: for $x \neq 0$, there is a $w \in S$

Inverse

The elements 0 and 1 are the additive identity element and the

A4: given x, there is a $w \in S$ such that x + w = 0such that $x \cdot w = 1$ Distributive Law DL: $x \cdot (y + z) = x \cdot y + x \cdot z$ The operations + and \cdot are called **addition** and **multiplication**.

A1: (x+y)+z = x+(y+z)M1: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ Associativity **A2**: x + y = y + xM2: $x \cdot y = y \cdot x$ Commutativity A3: x + 0 = xIdentity

It follows from these axioms that the additive inverse and multiplicative inverse (of a nonzero x) are unique. The additive inverse of x is the **negative** of x, written as -x. To define **subtraction** of y from x, we let x - y = x + (-y). The multiplicative inverse of x is the **reciprocal** of x, written as x^{-1} . The element 0 has no reciprocal. To define **division** of xby y when $y \neq 0$, we let $x/y = x \cdot (y^{-1})$. We write $x \cdot y$ as xy and $x \cdot x$ as

 x^2 . We use parentheses where helpful to clarify the order of operations.

1.40. Definition. Order Axioms. A positive set in a field F is a set $P \subseteq F$ such that for $x, y \in F$,

P1: $x, y \in P$ implies $x + y \in P$ P2: $x, y \in P$ implies $xy \in P$

P3: $x \in F$ implies exactly one of Trichotomy

Closure under Addition

Closure under Multiplication

 $x = 0, x \in P, -x \in P$

An **ordered field** is a field with a positive set *P*. In an ordered field, we define x < y to mean $y - x \in P$. The relations \leq , <, and \geq have analogous definitions in terms of P.

1.43. Proposition. Elementary consequences of the field axioms. a) x + z = y + z implies x = y e) (-x)(-y) = xy

b) $x \cdot 0 = 0$ c) (-x)y = -(xy)f) xz = yz and $z \neq 0$ imply x = yg) xy = 0 implies x = 0 or y = 0

d) -x = (-1)x

1.44. Proposition. Properties of an ordered field.	
O1: $x \leq x$	Reflexive Property
O2: $x \le y$ and $y \le x$ imply $x = y$	Antisymmetric Property
O3: $x < y$ and $y < z$ imply $x < z$	Transitive Property

Total Ordering Property

O3: $x \le y$ and $y \le z$ imply $x \le z$

O4: at least one of $x \le y$ and $y \le x$ holds

1.45. Proposition. More properties of an ordered field. F1: $x \le y$ implies $x + z \le y + z$ Additive Order Law F2: $x \le y$ and $0 \le z$ imply $xz \le yz$ Multiplicative Order Law

Addition of Inequalities
Multiplication of Inequalities

F3: $x \le y$ and $u \le v$ imply $x + u \le y + v$

F4: $0 \le x \le y$ and $0 \le u \le v$ imply xu < yv

- **1.46. Proposition.** Still more properties of an ordered field.

 - a) x < y implies -y < -xe) 0 < 1f) $0 < x \text{ implies } 0 < x^{-1}$
- b) $x \le y$ and $z \le 0$ imply $yz \le xz$
 - g) 0 < x < y implies $0 < y^{-1} < x^{-1}$ c) $0 \le x$ and $0 \le y$ imply $0 \le xy$ d) $0 < x^2$