Notes on the Solution of $x^{2}=2$

These are my notes that the equation $x^{2}=2$ has a real solution. They rely critically on the Archimedian property of the real numbers: If a and b are any two positive real numbers, then there is a positive integer n such that $n a>b$. Equivalently, there is an integer such that $b / n<a$.
Let $S=\left\{x \in \mathbb{R}: 0<x^{2}<2\right\}$. Since $1 \in S$, the set S is not empty. The squares of elements in S are all less than 2 so S is bounded above. Thus, by the least upper bound property of the real numbers, there is a real α that is the least upper bound of S.
I claim that $\alpha^{2}=2$, so α is the desired solution. I demonstrate this by showing that both other possibilities, $\alpha^{2}<2$ and $\alpha^{2}>2$, give contradictions.
Case 1 Intuitive idea: If $\alpha^{2}<2$, it looks like it is too small so we will increase it a bit to obtain a β that is larger than α yet still in S. This will show that in this case α is not an upper bound for S.
Details. Naively seek β in the form $\beta:=\alpha+\frac{1}{n}$ and pick n to be a sufficiently large integer. Clearly $\beta>\alpha$. We want to pick n so that $\beta^{2}<2$, since then $\beta \in S$. Because $1 / n^{2} \leq 1 / n$, we have

$$
\beta^{2}=\alpha^{2}+\frac{2 \alpha}{n}+\frac{1}{n^{2}} \leq \alpha^{2}+\frac{2 \alpha+1}{n} .
$$

Because $2-\alpha^{2}>0$, we can now pick n so large that $\frac{2 \alpha+1}{n}<2-\alpha^{2}$. This gives $\beta^{2}<$ $\alpha^{2}+\left(2-\alpha^{2}\right)=2$. Consequently β is an element of S that is larger than α and hence α is not an upper bound for S.
Case 2 Intuitive idea: If $\alpha^{2}>2$, it looks like it is too large so we will decrease it a bit to obtain a β that is smaller than α yet still $\beta^{2}>2$ so it is still an upper bound for S. This will show that in this case α is not the least upper bound for S.
Details. Naively seek β in the form $\beta:=\alpha-\frac{1}{n}$ and pick n to be a sufficiently large integer. Clearly $\beta<\alpha$. We want to pick n so that $\beta^{2}>2$, since then $\beta \notin S$. Now

$$
\beta^{2}=\alpha^{2}-\frac{2 \alpha}{n}+\frac{1}{n^{2}}>\alpha^{2}-\frac{2 \alpha}{n}=2+\left[\alpha^{2}-2\right]-\frac{2 \alpha}{n} .
$$

Because $\alpha^{2}>2$, if we pick n sufficiently large then the right hand side above will be larger than 2 , that is, $\beta^{2}>2$ so β is an upper bound for S. But $\beta<\alpha$ so in this case α is not the least upper bound for S.

The following problems use similar ideas and will be on Homework Set 3 .

1. Given any rationals p and q with $p<q$, show there is an irrational number α so that $p<\alpha<q$; "between any two rationals there is an irrational."
2. Given any irrationals α and β with $\alpha<\beta$, show there is a rational number r so that $\alpha<r<\beta$.; "between any two irrationals there is a rational."
[Last revised: August 30, 2018]
