Math 202
Exam 2
November 1, 2018
Jerry L. Kazdan
10:30 — 11:50

DIRECTIONS: Part A has 8 shorter problems (5 points each) while Part B has 4 traditional problems (10 points each). To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3 ×5 with notes on both sides.

PART A: Eight shorter problems, 5 points each.

A-1. Find all points in the complex plane where \(\sum_{n=0}^{\infty} \frac{n}{(z-2)^n} \) converges.

SOLUTION: By the ratio test, this converges absolutely when \(\left| \frac{1}{z-2} \right| < 1 \), that is, when \(|z-2| > 1 \). This is the exterior of a disk centered at \(z = 2 \) with radius 1.

The series diverges at every point of the boundary of this disk since at these points \(\frac{n}{|z-2|} = n \). This uses: “If a series \(\sum c_n \) converges then \(|c_n| \to 0 \).”

A-2. This problem concerns the continuity of \(f(x) = \frac{1}{x} \) at the point \(a = 1/1000 \). Let \(\epsilon = 1 \).

Find a \(\delta > 0 \) so that if \(|x - a| < \delta \) then \(|f(x) - f(a)| < \epsilon \).

SOLUTION: We want a \(\delta \) so that if \(|x - \frac{1}{1000}| < \delta \), then \(|\frac{1}{x} - 1000| < 1 \), that is, \(999 < \frac{1}{x} < 1001 \); equivalently, \(\frac{1}{1001} < x < \frac{1}{999} \). This means

\[
\frac{1}{1001} - \frac{1}{1000} < x - a < \frac{1}{999} - \frac{1}{1000},
\]

which is satisfied if \(\delta < \frac{1}{1000} - \frac{1}{1001} = \frac{1}{10001000} \). To be less exact, we can let \(\delta = 10^{-7} \).

A-3. Give an example of a bounded continuous function \(f(x), x \in \mathbb{R} \), that does not attain its infimum. A clear sketch is adequate.

SOLUTION: \(\frac{1}{1 + x^2} \).

A-4. Say a function \(f(x) \) has the properties \(f'(x) = 2 \cos 2x \) for all \(x \in \mathbb{R} \) and \(f(0) = 0 \). Show that \(f(x) = \sin 2x \). [HINT: To show that “\(A = B \)” it is often easiest to let \(C = A - B \) and then show that “\(C = 0 \)”.]

SOLUTION: Let \(h(x) := f(x) - \sin 2x \).

I show that \(h(x) = 0 \). First, \(h'(x) = 0 \) so \(h(x) = \) constant. But \(h(0) = 0 \).

A-5. Let \(f(x) \) and \(g(x) \) be continuous on \([a, b]\). If \(f(a) > g(a) \) and \(f(b) < g(b) \), prove that there is some \(c \in (a, b) \) where \(f(c) = g(c) \).
Solution Let \(h(x) := f(x) - g(x) \) and note that \(h(a) > 0 \) while \(h(b) < 0 \). Now apply the intermediate value theorem.

Can there be more than one such point?
Solution Yes, lots. Look at the graphs of \(f(x) = \cos x \) and \(g(x) = \sin x \) for \(0 \leq x \leq 3\pi \).

A-6. Give an example of a function \(f(x) \) that is continuous at every point of the set \(\{ x \geq 1 \} \) but is not uniformly continuous in this set.
Solution \(x^2 \)

A-7. Give an example of a function \(f(x) \) that is continuous for \(-1 \leq x \leq 1 \) but not differentiable at, say, \(x = 0 \).
Solution \(|x| \)

A-8. Let \(f(x), g(x), \) and \(h(x) \) be smooth functions

a) If \(f(a) = 0 \) and \(f'(x) \geq 0 \) for all \(x \geq a \), show that \(f(x) \geq f(a) \) for all \(x \geq a \).
Solution By the Mean Value Theorem there is a point \(c \), \(a < c < x \) so that
\[
f(x) - f(a) = f'(c)(x - a)
\]
Since \(f'(c) \geq 0 \), then \(f(x) - f(a) \geq 0 \).

b) If \(g(a) = h(a) \) and \(g'(x) \geq h'(x) \) for all \(x \geq a \), show that \(g(x) \geq h(x) \) for all \(x \geq a \).
Solution Let \(f(x) = g(x) - h(x) \) and apply part a).

Part B: Four traditional problems, 10 points each.

B-1. Use the definition of the derivative as the limit of a difference quotient to show that if \(f(x) = \cos 2x \), then \(f \) is differentiable everywhere and compute its derivative. [You may use that \(\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \) and \(\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0 \).]

B-2. Let \(f(x) \) be a smooth function with the properties \(f(0) = 3, f(1) = 1, \) and \(f(3) = 5 \). Show that \(f''(c) \geq A > 0 \) for some \(c \in (0, 3) \) and some \(A > 0 \). Give an explicit value for the constant \(A \).
Solution: By the Mean value Theorem for the intervals \(0 \leq x \leq 1 \) and \(1 \leq x \leq 3 \) there are points \(c_1 \in (0, 1) \) and \(c_2 \in (1, 3) \) so that
\[
f'(c_1) = \frac{f(1) - f(0)}{1 - 0} = -2 \quad f'(c_2) = \frac{f(3) - f(1)}{3 - 1} = 2.
\]
Now apply the Mean Value Theorem again to \(f'(x) \) for \(c_1 < x < c_2 \) to find a \(c_3 \in (c_1, c_2) \) do that
\[
f''(c_3) = \frac{f'(c_2) - f'(c_1)}{c_2 - c_1} = \frac{4}{c_2 - c_1} \geq 4.
\]
B-3. Let \(f(x) \) be differentiable at every point of the open interval \(a < x < b \) (possibly unbounded).

a) If the derivative is bounded, say \(|f'(x)| \leq M\), in this interval, show that \(f \) is uniformly continuous in the interval.

b) If the derivative is not bounded in this interval, show that \(f \) is not uniformly continuous in the interval.

Solution: This assertion is *FALSE*. All of the counterexamples below are uniformly continuous – although their first derivatives are unbounded:

\[
\begin{align*}
f(x) &= \sqrt{x} \quad \text{for } 0 \leq x \leq 1. \\
g(x) &= x \sin(1/x) \quad \text{for } 0 < x \leq 1, \quad g(0) = 0, \\
h(x) &= \frac{\sin x^3}{x} \quad \text{for } 1 \leq x.
\end{align*}
\]

c) Apply these to the functions \(x^2 \) and \(1/x \) on the interval \(x \geq 1 \).

B-4. a) Say the smooth function \(w(x) \) satisfies \(w'' - c(x)w \leq 0 \), where \(c(x) > 0 \). Show there is no point \(p \) where \(w \) has a local minimum and \(w(p) < 0 \).

Solution: At a local minimum \(w'' \geq 0 \). Since \(w(p) < 0 \) and \(c(x) > 0 \), this contradicts \(w'' - c(x)w \leq 0 \).

b) If on a bounded interval \(a \leq x \leq b \) \(w \) satisfies this and \(w(a) = w(b) = 0 \), show that \(w(x) \geq 0 \) on the whole interval.

Solution: Reasoning by contradiction, say \(w(p) < 0 \) somewhere in \([a, b]\). Let \(q \) be the point in \([a, b]\) where \(w \) has its minimum value. Then \(w(q) < 0 \). Note, \(q \) can’t be an endpoint because \(w(a) = w(b) = 0 \). Therefore \(w \) has a negative local minimum at \(q \). By part a), this is impossible. Therefore \(w(x) \geq 0 \) for all \(x \in [a, b] \).

c) Say on the interval \([a, b]\) the smooth functions \(u(x) \) and \(v(x) \) satisfy

\[
\begin{align*}
 u'' - c(x)u &= f(x), \\
 v'' - c(x)v &= g(x), \\
 \text{with } u(a) = v(a), \quad u(b) = v(b),
\end{align*}
\]

where, as above, \(c(x) > 0 \), and \(f \) and \(g \) are given functions. If \(f(x) \leq g(x) \), show that \(u(x) \geq v(x) \) in \([a, b]\).

Solution: Let \(w(x) := u(x) - v(x) \). Then by part b) we have \(w(x) \geq 0 \).

1This whole problem – with the same proof – is valid for the more general differential operator \(w'' + b(x)w' - c(x)w \), where \(b(x) \) is any continuous function.