Directions: Part A has 6 short questions (5 points each), Part B has 2 shorter problems (8 points each), Part C has 4 traditional problems (12 points each). 94 points total. To receive full credit your solution should be clear and correct. Neatness counts. You have 1 hour 20 minutes. Closed book, no calculators, but you may use one 3 × 5 with notes on both sides.

Part A: Six shorter problems, 5 points each [total: 30 points]

A-1. Give an example of a power series \(\sum_{k=0}^{\infty} a_k x^k \) that converges for all \(x \) with \(|x| < 2 \) but not if \(|x| \geq 2 \).

A-2. Let \(p(x) = x^3 - 3x + 1 \). Show that \(p(x) \) has 3 distinct real zeros.

A-3. Give an example of a sequence, \(f_n(x) \), of bounded functions on the interval \([0, 1]\) that converge pointwise but do not converge uniformly. A good sketch is adequate.

A-4. Find a continuous function \(f \) and a constant \(C \) so that \(\int_0^x f(t)(1 + t^2) \, dt = x + \cos x + C \).

A-5. Show that the series \(\sum_{k=0}^{\infty} \frac{1 + \cos 2kx}{1 + k^4} \) converges uniformly.

A-6. Say a function \(f(x) \) has the properties \(f'(x) = \frac{2x}{1 + x^2} \) for all \(x \in \mathbb{R} \) and \(f(0) = -1 \). Show that \(f(x) = \ln(1 + x^2) - 1 \).

Part B: Two shorter problems, 8 points each [16 points]

B-1. Show that \(f(x) = \frac{1}{x} \) is uniformly continuous in the set \(\{ x \geq 1 \} \).

B-2. Let \(a_n \) and \(b_n \) be sequences with the properties \(a_n \to L \) and \(b_n - a_n \to 0 \). Given any \(\epsilon > 0 \), show that \(b_n \to L \) by finding an \(N \) so that if \(n > N \) then \(|b_n - L| < \epsilon \).

Part C: Four traditional problems, 12 points each [48 points]

C-1. Let \(f(x) \) be a continuous function on the interval \(I = \{ a \leq x \leq b \} \) and let \(\mathcal{P} \) be a partition of \(I \) into two intervals having equal width \(h = (b - a)/2 \). If \(f \) is an increasing function, Show that the upper and lower Riemann sums satisfy

\[
U(f, \mathcal{P}) - L(f, \mathcal{P}) = [f(b) - f(a)]h.
\]

[Your solution should include a sketch.]
C-2. a) Let \(f(x) \) have two continuous derivatives on \(\mathbb{R} \) and let \(x_0 < x_1 < x_2 \) be given points. If
\(f(x_0) = f(x_1) = f(x_2) = 0 \), show that there is a point \(c \in (x_0, x_2) \) where \(f''(c) = 0 \).

b) Let \(h(x) \) have two continuous derivatives on \(\mathbb{R} \) and let \(p(x) = Ax^2 + Bx + C \). If
\[h(x_0) = p(x_0), \quad h(x_1) = p(x_1), \quad \text{and} \quad h(x_2) = p(x_2), \]
show there is a point \(c \in (x_0, x_2) \) where \(h''(c) = p''(c) = 2A \).

C-3. If \(f \) is a continuous function on the interval \([a, b]\), let \(m := \min_{x \in [a, b]} f(x) \) and \(M := \max_{x \in [a, b]} f(x) \).

a) Show that
\[m \leq \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \leq M. \]

b) Show there is a point \(c \in [a, b] \) such that
\[\frac{1}{b-a} \int_{a}^{b} f(x) \, dx = f(c) \]

C-4. Let \(f(x) \) be continuous on the interval \([0, 1]\). Show that
\[\lim_{n \to \infty} n \int_{0}^{1} f(x)x^n \, dx = f(1). \]