PART A: Six shorter problems, 5 points each [total: 30 points]

A-1. Give an example of a power series \(\sum_{k=0}^{\infty} a_k x^k \) that converges for all \(x \) with \(|x| < 2 \) but not if \(|x| \geq 2 \).

SOLUTION: The geometric series \(\sum_{k=0}^{\infty} \frac{x^k}{2^k} \)

A-2. Let \(p(x) = x^3 - 3x + 1 \). Show that \(p(x) \) has 3 distinct real zeros.

SOLUTION: Observe that \(p(-\infty) = -\infty \), \(p(0) = 1 \), \(p(1) = -1 \), and \(p(+\infty) = +\infty \). Now apply the intermediate value theorem.

One could also exploit that \(p \) has critical points at \(x = \pm 1 \).

A-3. Give an example of a sequence, \(f_n(x) \), of bounded functions on the interval \([0, 1]\) that converge pointwise but do not converge uniformly. A good sketch is adequate.

SOLUTION: \(f_n(x) = x^n \).

A-4. Find a continuous function \(f \) and a constant \(C \) so that

\[
\int_0^x f(t)(1 + t^2) \, dt = x + \cos x + C.
\]

SOLUTION: To find \(C \) let \(x = 0 \): \(0 = 0 + 1 + C \) so \(C = -1 \).

To find \(f \) use the fundamental theorem of calculus:

\[
f(x)(1 + x^2) = 1 - \sin x \quad \text{so} \quad f(x) = \frac{1 - \sin x}{1 + x^2}.
\]

A-5. Show that the series \(\sum_{k=0}^{\infty} \frac{1 + \cos 2^k x}{1 + k^4} \) converges uniformly.

SOLUTION: Since \(\left| \frac{1 + \cos 2^k x}{1 + k^4} \right| \leq \frac{2}{1 + k^4} \), this is a consequence of the Weierstrass M Test.
A-6. Say a function \(f(x) \) has the properties \(f'(x) = \frac{2x}{1+x^2} \) for all \(x \in \mathbb{R} \) and \(f(0) = -1 \). Show that \(f(x) = \ln(1 + x^2) - 1 \).

Solution: Let \(g(x) = f(x) - [\ln(1 + x^2) - 1] \). Then \(g'(x) = 0 \) so \(g(x) = \text{constant} \). But \(g(0) = 0 \).

Part B: Two shorter problems, 8 points each [16 points]

B-1. Show that \(f(x) = 1/x \) is uniformly continuous in the set \(\{ x \geq 1 \} \).

Solution: Version 1. For all \(x, y \geq 1 \) we have

\[
\left| \frac{1}{x} - \frac{1}{y} \right| = \left| \frac{x - y}{xy} \right| \leq |x - y|
\]

so given \(\epsilon > 0 \) pick \(\delta = \epsilon \).

Version 2. Because \(x, y \geq 1 \), then \(|f'(x)| = 1/x^2 \leq 1 \). Then by the Mean Value Theorem

\[
|f(x) - f(y)| \leq |x - y|
\]

so we can let \(\delta = \epsilon \).

B-2. Let \(a_n \) and \(b_n \) be sequences with the properties \(a_n \to L \) and \(b_n - a_n \to 0 \). Given any \(\epsilon > 0 \), show that \(b_n \to L \) by finding an \(N \) so that if \(n > N \) then \(|b_n - L| < \epsilon \).

Solution: Given \(\epsilon > 0 \).

There is an \(N_1 \) so that if \(n > N_1 \) then \(|a_n - L| < \epsilon/2 \).

There is an \(N_2 \) so that if \(n > N_2 \) then \(|b_n - a_n| < \epsilon/2 \).

Let \(N = \max\{N_1, N_2\} \). Then for \(n > N \)

\[
|b_n - L| = |b_n - a_n + a_n - L| \leq |b_n - a_n| + |a_n - L| \leq \epsilon/2 + \epsilon/2 = \epsilon
\]

Part C: Four traditional problems, 12 points each [48 points]

C-1. Let \(f(x) \) be a continuous function on the interval \(I = \{ a \leq x \leq b \} \). and let \(\mathcal{P} \) be a partition of \(I \) into two intervals having equal width \(h = (b - a)/2 \). If \(f \) is an increasing function, Show that the upper and lower Riemann sums satisfy

\[
U(f, \mathcal{P}) - L(f, \mathcal{P}) = [f(b) - f(a)]h.
\]

[Your solution should include a sketch.]

Solution:

\[
U(f, \mathcal{P}) = + f(a + h)h + f(b)h
\]

\[
L(f, \mathcal{P}) = f(a)h + f(a + h)h
\]

Thus

\[
U(f, \mathcal{P}) - L(f, \mathcal{P}) = [f(b) - f(a)]h
\]

2
C-2. a) Let $f(x)$ have two continuous derivatives on \mathbb{R} and let $x_0 < x_1 < x_2$ be given points. If $f(x_0) = f(x_1) = f(x_2) = 0$, show that there is a point $c \in (x_0, x_2)$ where $f''(c) = 0$.

Solution: By Rolle’s Theorem there is a point $c_1 \in (x_0, x_1)$ so that $f'(c_1) = 0$. Similarly, there is a point $c_2 \in (x_1, x_2)$ so that $f'(c_2) = 0$. Thus there is a point $c \in (c_1, c_2)$ so that $f''(c) = 0$.

b) Let $h(x)$ have two continuous derivatives on \mathbb{R} and let $p(x) = Ax^2 + Bx + C$. If $h(x_0) = p(x_0)$, $h(x_1) = p(x_1)$, and $h(x_2) = p(x_2)$, show there is a point $c \in (x_0, x_2)$ where $h''(c) = p''(c) = 2A$.

Solution: Apply part a) to $f(x) := h(x) - p(x)$.

C-3. If f is a continuous function on the interval $[a, b]$, let $m := \min_{x \in [a,b]} f(x)$ and $M := \max_{x \in [a,b]} f(x)$.

a) Show that

$$m \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq M.$$

Solution: This is obvious from the Riemann sum definition of the integral.

b) Show there is a point $c \in [a, b]$ such that

$$\frac{1}{b-a} \int_a^b f(x) \, dx = f(c).$$

Remark: A useful routine generalization is: for any continuous $w(x) \geq 0$

$$\int_a^b f(x)w(x) \, dx = f(c) \int_a^b w(x) \, dx$$

Solution Let $Q := \frac{1}{b-a} \int_a^b f(x) \, dx$. By Part a), $m \leq Q \leq M$. Thus by the Intermediate Value Theorem there is some $c \in [a, b]$ so that $f(c) = Q$.

C-4. Let $f(x)$ be continuous on the interval $[0, 1]$. Show that

$$\lim_{n \to \infty} n \int_0^1 f(x)x^n \, dx = f(1).$$

Solution: [This problem is more difficult than I intended.] Write $J_n(f) = n \int_0^1 f(x)x^n \, dx$.

Method 1 To start, note that by a short computation the assertion is true for the special case where $f(x) = \text{constant}$. Write $f(x) = [f(x) - f(1)] + f(1)$, so $J_n(f) = J_n(f(x) - f(1)) + J_n(f(1))$. Since the assertion is true for the constant function $f(1)$, we need only prove it for the function $g(x) := f(x) - f(1)$ which has the additional property that $g(1) = 0$.

3
Examining the integrand more closely, note that if $0 \leq x \leq c < 1$ then $nx^n \leq nc^n \to 0$ as $n \to \infty$. Thus, all of the action takes place near $x = 1$. This leads us to write

$$J_n(g) = \int_0^1 g(x)nx^n \, dx = \int_0^c + \int_c^1 = I_1 + I_2$$

To show that $J_n \to 0$, we will first choose c near 1 so that $|I_2| < \epsilon/2$ for all n. We will then pick N so that if $n > N$ then $|I_1| < \epsilon/2$. Assuming for the moment that we have done this, then

$$|J_n| \leq |I_1| + |I_2| < \epsilon,$$

as desired.

To estimate I_2, since $g(1) = 0$ we can pick δ so that if $|x - 1| < \delta$ then $|g(x)| < \epsilon/2$ and let $c = 1 - \delta$. With this choice

$$|I_2| \leq \int_0^1 |g(x)|nx^n \, dx \leq (\epsilon/2)\int_0^1 nx^n \, dx < \epsilon/2.$$

To estimate I_1, let $M = \max_{[0,1]} |f(x)|$. Then because $0 \leq c < 1$, for n large we have

$$|I_1| \leq M \int_c^0 nx^n \, dx = \frac{n}{n+1} M c^{n+1} < \epsilon/2.$$

Method 2. For the moment we will assume that $f(x)$ is smooth ($f \in C^1([0,1])$ is enough) and integrate by parts:

$$J_n(f) = \int_0^1 f(x)x^n \, dx = \frac{n}{n+1} f(x)x^{n+1} \bigg|_0^1 - \frac{n}{n+1} \int_0^1 f'(x)x^{n+1} \, dx = \frac{n}{n+1} f(1) - \frac{n}{n+1} \int_0^1 f'(x)x^{n+1} \, dx.$$

To estimate the second term, say $K := \max_{[a,b]} |f'(x)|$. Then

$$\left| \frac{n}{n+1} \int_0^1 f'(x)x^{n+1} \, dx \right| \leq K \frac{n}{(n+1)(n+2)}$$

Now let $n \to \infty$ in equation (??).

One can apply this even if f is only continuous. Use the fact that there is a smooth function g (even a polynomial) that approximates f uniformly on $[0,1]$:

$$\max_{[a,b]} |f(x) - g(x)| < \epsilon/3$$

The rest is routine:

$$J_n(f) - f(1) = J_n(f-g) + [J_n(g) - g(1)] + [g(1) - f(1)].$$

But

$$|J_n(f-g)| \leq J_n(|f-g|) < (\epsilon/3)J_n(1) < \epsilon/3,$$

while, since g is differentiable we know that for n large, $|J_n(g) - g(1)| < \epsilon/3$. Also, $|f(1) - g(1)| < \epsilon/3$.

Weierstrass Approximation Theorem

1