Problem Set 6

Due: In class Thursday, Oct. 18. Late papers will be accepted until 1:00 PM Friday.

Remarks:
Please re-read Chapter 15 on Continuity and read Chapter 16, pages 307-317 on Differentiation.

Problems

1. In class, if $z = x + iy$ we defined e^z by a power series and observed that, $e^{ix} = \cos x + i \sin x$. From the power series one can also show that for any complex z and w the usual formula $e^{z+w} = e^z e^w$ remains valid. Use the observation that

$$1 + \cos x + \cos 2x + \cdots + \cos nx = \text{Real part of } \{1 + e^{ix} + e^{2ix} + \cdots + e^{nix}\}$$

and that the right hand side is a geometric series to find a formula for $1 + \cos x + \cos 2x + \cdots + \cos nx$. [Assume x is not a multiple of 2π]. Your resulting formula should not have any complex numbers.

2. [#15.3] [T/F] If $f : \mathbb{R} \to \mathbb{R}$ is continuous everywhere and $f(x) = 0$ for all rational numbers x, then $f(x) = 0$ for all real x.

3. [#15.5] [T/F] The function $f(x) := |x|^3$ is continuous for all $x \in \mathbb{R}$.

4. [#15.7] [T/F] Let f, g, and h be continuous on the interval $[0, 2]$. If $f(0) < g(0) < h(0)$ and $f(2) > g(2) > h(2)$, then there exists some $c \in [0, 2]$ such that $f(c) = g(c) = h(c)$.

5. [#15.10][T/F]
 a) If f is continuous on \mathbb{R}, then f is bounded.
 b) If f is continuous on $[0, 1]$, then f is bounded.
 c) If f is continuous on \mathbb{R} and is bounded, then f attains its supremum.

6. [#15.12] Construct a function f with the property that there are sequences a_n and b_n converging to zero such that $f(a_n)$ converges to zero but $f(b_n)$ is unbounded.

 Does there exist such a function f that is continuous at $x = 0$?

7. [#15.15] Let $f(x) := x^2 + 4x$. Clearly $\lim_{x \to 0} f(x) = 0$. Assuming that $0 < \epsilon < 4$, how small must δ be so that $|x| < \delta$ implies that $|f(x)| < \epsilon$? Express δ as a function of ϵ.

1
Let \(f(a, n) := (1 + a)^n \), where \(a \) and \(n \) are positive.

a) For constant \(a \), how does \(f(a, n) \) behave as \(n \to \infty \)? For constant \(n \), how does \(f(a, n) \) behave as \(a \to 0 \)?

b) Let \(L \geq 1 \) be a given real number. Prove that there exists a sequence \(a_n \to 0 \) and \(f(a_n, n) \to L \) as \(n \to \infty \). In other words, depending on the choice of \(a_n \), \(f \) may approach any value.

Prove that there exists \(x \in [1, 2] \) such that \(x^5 + 2x + 5 = x^4 + 10 \).

Given any real number \(c > 0 \), prove there is an \(x > 0 \) such that \(x^{17} + 8x^2 = c \).

Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous (real-valued) function that is continuous at \(x = a \). If \(f(a) > 0 \), show there is an interval \(J := \{ x \in \mathbb{R} | |x - a| < \delta \} \) so that if \(x \in J \), then \(f(x) > f(a)/2 \).

Prove that any (real) polynomial whose degree is odd must have at least one real root.

Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function with the property:

\[
f(x + y) = f(x) + f(y)
\]

for all real \(x \) and \(y \)

and let \(c := f(1) \)

a) Show that \(f(0) = 0 \).

b) Show that \(f(-x) = -f(x) \) for all real \(x \).

c) If \(k \) is a positive integer show that \(f(kx) = kf(x) \) for all \(x \).

d) If \(k \) and \(n \) are positive integers, show that \(f(k) = kf(1) = kc \) and \(f(1/n) = c/n \).

e) If \(x = p/q \) is a rational number, show that \(f(x) = cx \).

f) If \(x \) is a real number, show that \(f(x) = cx \).

Say \(g : \mathbb{R} \to \mathbb{R} \) is a continuous function with the property:

\[
g(x + y) = g(x)g(y)
\]

for all real \(x \) and \(y \).

What can you conclude about \(g \)?
Bonus Problem

[Please give your solutions directly to Professor Kazdan]

1-B The number e is defined as

$$e = 1 + 1 \cdot \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \cdots.$$

Prove that e is not a rational number by the following steps.

a) Show that $2 < e < 3$. So e is definitely not an integer.

b) By contradiction, say $e = \frac{p}{q}$, where p and q are positive integers with $q \geq 2$. Show that

$$e q! = N + \frac{c}{q + 1},$$

where N is an integer and $0 < c < e$. Thus, conclude that $\frac{c}{q+1}$ must be an integer.

c) Then show that this contradicts $e < 3$ and $q + 1 \geq 3$.

[Last revised: October 13, 2018]