## Linear Algebra: An Outline with Examples

Linear Space (=Vector Space): cv, v+w. Letting $c=0$ shows that a linear space must always have the 0 vector.
Examples: $\mathbb{R}^{2}, R^{n}$
Polynomials of degree at most two: $\mathcal{P}_{2}, \quad p(x)=a_{0}+a_{1} x+a_{2} x^{2}$
The straight line: $\left\{(x, y) \in \mathbb{R}^{2} x+y=0\right\}$ is a linear space. It is a linear subspace of $\mathbb{R}^{2}$.
The straight line: $\left\{(x, y) \in \mathbb{R}^{2} x+y=1\right\}$ is not a linear space since it does not have the zero vector.
The upper half plane $\left\{(x, y) \in \mathbb{R}^{2}: y \geq 0\right\}$ is not a linear space since it contains $V=(0,1)$ but it does not contain $(0,-1(c=-1)$
Words: span, linearly independent, basis, dimension, linear subspace.
Picking Coordinates Idea: adapt them to the problem.
Linear Maps $L: V \rightarrow W$ Linear maps have two properties:

$$
L(c X)=c L(X), \quad L(X+Y)=L(X)+L(Y)
$$

Letting $c=0$ implies in particular that $L(0)=$, it maps the origin in $V$ to the origin in $W$.
The following maps from $\mathbb{R}$ to $\mathbb{R}$ are not linear:

$$
f(x)=x^{2}, \quad g(x)=\sqrt{x}, \quad \frac{1}{x}
$$

The formulas

$$
(x+y)^{2}=x^{2}+y^{2}, \quad \sqrt{x+y}=\sqrt{x}+\sqrt{y}, \quad \text { and } \quad \frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}
$$

are not true. These may have annoyed you at an earlier point of your life (they may still annoy you).

Examples: $\quad A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$

$$
\begin{aligned}
& a x_{1}+b x_{2}=y_{1} \\
& c x_{1}+d x_{2}=y_{2}
\end{aligned}
$$

The letter $\mathbf{F}$ :
https://www.math.upenn.edu/~kazdan/312S13/Notes/F1.pdf
Example:
The simplest matrices are square diagonal matrices.
Examples 0: The zero matrix $0=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ which maps every point to 0 .
The identity matrix $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ which maps every point to itself
Example 1: $\quad R=$ reflection across the line $x_{2}=0 . \quad A=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
Find the eigenvalues and corresponding eigenvectors. $\lambda_{1}=1, \quad \lambda_{2}=$ $-1,1=\binom{1}{0}, V_{2}=\binom{0}{1}$
EXAMPLE $2: \quad R=$ reflection across the line $x_{1}=x_{2} . \quad A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Find the eigenvalues and corresponding eigenvectors. $\lambda_{1}=1, \quad \lambda_{2}=$ $-1, V_{1}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}, V_{2}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$.
https://www.math.upenn.edu/~kazdan/312S13/Notes/3x2.pdf Linear maps from $\mathbb{R}^{2}$ to $\mathbb{R}^{3}$.

Example 3: If $x_{n+2}=x_{n+1}+x_{n}$, with $x_{0}=0$ and $x_{1}=1$, find a formula for $x_{n}$. These are the Fibonacci numbers: $0,1,2,3,5,8,13,21,34, \ldots$ These arise in a number of situations, such as the growth of plants and trees.

To begin we rewrite this two-step process as a one-step system of linear equations. Let $u_{n}=x_{n}, v_{n}=u_{n+1}$. Then

$$
\binom{u_{n+1}}{v_{n+1}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\binom{u_{n}}{v_{n}} \quad \text { so } \quad U_{n+1}=A U_{n}, \quad U_{0}=\binom{0}{1}
$$

Consequently, $U_{n}=A^{n} U_{0}$. If $A$ were a diagonal matrix, then $A^{n}$ would be simple to compute. Here is where eigenvalues and eigenvectors help us.
Find the eigenvalues of $A: 0=\operatorname{det}(A-\lambda I)=\lambda^{2}-\lambda-1$, so $\lambda_{1}=\frac{1+\sqrt{5}}{2}$, $\lambda_{2}=\frac{1-\sqrt{5}}{2}$.
Corresponding eigenvectors: $W_{1}=\binom{1}{\lambda_{1}}, W_{2}=\binom{1}{\lambda_{2}}$.
Write $U_{0}$ in this basis: $U_{0}=a W_{1}+b W_{2}$

$$
\binom{0}{1}=a\binom{1}{\lambda_{1}}+b\binom{1}{\lambda_{2}}
$$

so $a+b=0$ and $a \lambda_{1}+b \lambda_{2}=1$. Thus $U_{0}=\frac{W_{1}-W_{2}}{\lambda_{1}-\lambda_{2}}$.
Consequently $U_{100}=\frac{\lambda_{1}^{100} W_{1}-\lambda_{2}^{100} W_{2}}{\lambda_{1}-\lambda_{2}}$.
For the Fibonacci number $x_{100}$ we want the first component of $U_{100}$

$$
x_{100}=\frac{\lambda_{1}^{100}-\lambda_{2}^{100}}{\lambda_{1}-\lambda_{2}} .
$$

Example $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, B: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, so $B A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} A B: \$^{3} \rightarrow$ $\mathbb{R}^{3}$.

Words: homogeneous equation, inhomogenuous equation, one-to-one (injective), onto (surjective), invertible (inverse map, bijective, isomorphism)).
Remark: Notable formula: $(B A)^{-1}=A^{-1} B^{-1}$. This formula has almost nothing to do with matrices; it is valid for all invertible maps.
$D: \mathcal{P}_{\epsilon} \rightarrow \mathcal{P}_{\in}$ The derivative: $D\left(a+b x+c x^{2}\right)=b+2 c x$
Note: $D^{2}\left(a+b x+c x^{2}\right)=D(b+2 c x)=2 c$ so $D^{3}\left(a+b x+c x^{2}\right)=0$.
https://www.math.upenn.edu/~kazdan/312S14/Notes/kernel-image. pdf A summary of basic facts.

Example: Polynomial interpolation. $L: \mathcal{P}_{n} \rightarrow \mathbb{R}^{n+1}$. Given the distinct real numbers $x_{0}, x_{1}, \ldots, x_{n}$, let $L(p)$ the the value of the polynomial $p(x)$ at these points, so

$$
L(p)=\left(p\left(x_{0}, p\left(x_{1}\right), \ldots, p\left(x_{n}\right)\right)\right.
$$

For instance, if $n=2$, say we want a quadratic polynomial $p(x)=$ $a_{0}+a_{1} x+a_{2} x^{2}$ that passes through the three points $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)$, $\left(x_{2}, y_{2}\right)$, so

$$
p\left(x_{0}\right)=y_{0}, \quad, p\left(x_{1}\right)=y_{1} \quad \text { and } \quad p\left(x_{2}\right)=y_{2} .
$$

These are three linear equations in the three unknowns $a_{0}, a_{1}$, and $a_{2}$. Is there always a solution? If so, is it unique?

Example: Let $L: \mathcal{P}_{k} \rightarrow \mathcal{P}_{k}$ be $L(p)=p^{\prime}+2 p$ (here $p^{\prime}$ is the first derative). Given a quadratic polynomial $q$ can one always find a quadratic polynomial $p$ so that $L p=$, that is, $p^{\prime}+2 p=q$ ? If so, is it unique?
https://www.math.upenn.edu/~kazdan/210S19/Notes/Maple/Maple Examples
https://www.math.upenn.edu/~kazdan/504/la.pdf Large collection of Linear Algebra Problems

