Linear Algebra: An Outline with Examples

Linear Space (= Vector Space): cv, v + w. Letting c = 0 shows that a linear space must always have the 0 vector.

EXAMPLES: \mathbb{R}^2 , \mathbb{R}^n

Polynomials of degree at most two: \mathcal{P}_2 , $p(x) = a_0 + a_1 x + a_2 x^2$

The straight line: $\{(x, y) \in \mathbb{R}^2 x + y = 0\}$ is a linear space. It is a *linear subspace* of \mathbb{R}^2 .

The straight line: $\{(x, y) \in \mathbb{R}^2 x + y = 1\}$ is *not* a linear space since it does not have the zero vector.

The upper half plane $\{(x, y) \in \mathbb{R}^2 : y \ge 0\}$ is not a linear space since it contains V = (0, 1) but it does not contain $(0, -1 \ (c = -1))$

WORDS: span, linearly independent, basis, dimension, linear sub-space.

PICKING COORDINATES Idea: adapt them to the problem.

Linear Maps $L: V \to W$ Linear maps have two properties:

$$L(cX) = cL(X), \qquad L(X+Y) = L(X) + L(Y)$$

Letting c = 0 implies in particular that L(0) =, it maps the origin in V to the origin in W.

The following maps from \mathbb{R} to \mathbb{R} are *not* linear:

$$f(x) = x^2, \qquad g(x) = \sqrt{x}, \qquad \frac{1}{x}$$

The formulas

$$(x+y)^2 = x^2 + y^2$$
, $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$, and $\frac{1}{x+y} = \frac{1}{x} + \frac{1}{y}$

are not true. These may have annoyed you at an earlier point of your life (they may still annoy you).

EXAMPLES: $A : \mathbb{R}^2 \to \mathbb{R}^2$

$$ax_1 + bx_2 = y_1$$
$$cx_1 + dx_2 = y_2$$

The letter **F**: https://www.math.upenn.edu/~kazdan/312S13/Notes/F1.pdf

Example:

THE SIMPLEST MATRICES ARE SQUARE DIAGONAL MATRICES.

EXAMPLES 0: The zero matrix $0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ which maps every point to 0.

The *identity matrix* $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ which maps every point to itself

EXAMPLE 1: R = reflection across the line $x_2 = 0$. $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Find the eigenvalues and corresponding eigenvectors. $\lambda_1 = 1$, $\lambda_2 = -1$, $_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $V_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

EXAMPLE 2: R = reflection across the line $x_1 = x_2$. $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Find the eigenvalues and corresponding eigenvectors. $\lambda_1 = 1$, $\lambda_2 = -1$, $V_1 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$, $V_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix}$.

https://www.math.upenn.edu/~kazdan/312S13/Notes/3x2.pdf Linear maps from \mathbb{R}^2 to \mathbb{R}^3 .

EXAMPLE 3: If $x_{n+2} = x_{n+1} + x_n$, with $x_0 = 0$ and $x_1 = 1$, find a formula for x_n . These are the *Fibonacci numbers*: 0, 1, 2, 3, 5, 8, 13, 21, 34, These arise in a number of situations, such as the growth of plants and trees.

To begin we rewrite this two-step process as a one-step system of linear equations. Let $u_n = x_n$, $v_n = u_{n+1}$. Then

$$\begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} u_n \\ v_n \end{pmatrix} \quad \text{so} \quad U_{n+1} = AU_n, \quad U_0 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Consequently, $U_n = A^n U_0$. If A were a diagonal matrix, then A^n would be simple to compute. Here is where eigenvalues and eigenvectors help us.

Find the eigenvalues of A: $0 = \det(A - \lambda I) = \lambda^2 - \lambda - 1$, so $\lambda_1 = \frac{1 + \sqrt{5}}{2}$, $\lambda_2 = \frac{1 - \sqrt{5}}{2}$.

Corresponding eigenvectors: $W_1 = \begin{pmatrix} 1 \\ \lambda_1 \end{pmatrix}$, $W_2 = \begin{pmatrix} 1 \\ \lambda_2 \end{pmatrix}$. Write U_0 in this basis: $U_0 = aW_1 + bW_2$

$$\begin{pmatrix} 0\\1 \end{pmatrix} = a \begin{pmatrix} 1\\\lambda_1 \end{pmatrix} + b \begin{pmatrix} 1\\\lambda_2 \end{pmatrix}$$

so a + b = 0 and $a\lambda_1 + b\lambda_2 = 1$. Thus $U_0 = \frac{W_1 - W_2}{\lambda_1 - \lambda_2}$. Consequently $U_{100} = \frac{\lambda_1^{100} W_1 - \lambda_2^{100} W_2}{\lambda_1 - \lambda_2}$.

For the Fibonacci number x_{100} we want the first component of U_{100}

$$x_{100} = \frac{\lambda_1^{100} - \lambda_2^{100}}{\lambda_1 - \lambda_2}$$

EXAMPLE $A: \mathbb{R}^2 \to \mathbb{R}^3, B: \mathbb{R}^3 \to \mathbb{R}^2$, so $BA: \mathbb{R}^2 \to \mathbb{R}^2 AB: \mathbb{S}^3 \to \mathbb{R}^3$.

WORDS: homogeneous equation, inhomogenuous equation, one-to-one (injective), onto (surjective), invertible (inverse map, bijective, isomorphism)).

REMARK: Notable formula: $(BA)^{-1} = A^{-1}B^{-1}$. This formula has almost nothing to do with matrices; it is valid for all invertible maps.

 $D: \mathcal{P}_{\in} \to \mathcal{P}_{\in}$ The derivative: $D(a + bx + cx^2) = b + 2cx$ Note: $D^2(a + bx + cx^2) = D(b + 2cx) = 2c$ so $D^3(a + bx + cx^2) = 0$. https://www.math.upenn.edu/~kazdan/312S14/Notes/kernel-image. pdf A summary of basic facts.

Example: POLYNOMIAL INTERPOLATION. $L : \mathcal{P}_n \to \mathbb{R}^{n+1}$. Given the distinct real numbers x_0, x_1, \ldots, x_n , let L(p) the the value of the polynomial p(x) at these points, so

$$L(p) = (p(x_0, p(x_1), \dots, p(x_n))).$$

For instance, if n = 2, say we want a quadratic polynomial $p(x) = a_0 + a_1 x + a_2 x^2$ that passes through the three points (x_0, y_0) , (x_1, y_1) , (x_2, y_2) , so

$$p(x_0) = y_0,$$
, $p(x_1) = y_1$ and $p(x_2) = y_2$.

These are three linear equations in the three unknowns a_0 , a_1 , and a_2 . Is there always a solution? If so, is it unique?

Example: Let $L : \mathcal{P}_k \to \mathcal{P}_k$ be L(p) = p' + 2p (here p' is the first derative). Given a quadratic polynomial q can one always find a quadratic polynomial p so that Lp =, that is, p' + 2p = q? If so, is it unique?

https://www.math.upenn.edu/~kazdan/210S19/Notes/Maple/ Maple Examples

https://www.math.upenn.edu/~kazdan/504/la.pdf Large collection of Linear Algebra Problems