Public Key Encryption

The essence of this procedure is that as far as we currently know, it is difficult to factor a number that is the product of two primes each having many, say 100, digits.

Some Introductory Number Theory

I assume you know what a prime number is. Euclid's *Elements* contains the first proof that there are infinitely many prime numbers. ¹. Although it is completely elementary, it is not obvious. The proof shows that if you know the first n primes, $2 = p_1 < p_2 < \cdots < p_n$, then it concludes there is a larger prime. Note: it doesn't exhibit a larger prime but just shows that a larger prime exists, and a range of numbers in there is at least one more prime. Here is the beautiful reasoning. Let

$$N = p_1 p_2 \cdots p_n + 1.$$

Either N is prime or it isn't. If it is prime, then we are done. If it isn't, then it is divisible by a prime. However, it is clearly not divisible by any of p_1, p_2, \ldots, p_n since upon division, they all give a remainder of 1. Thus it is divisible by some prime larger than p_n and less than N.

NOTATION: We write $a \equiv b \pmod{n}$ to mean that the integers a and b have the same remainder when divided by n. This is equivalent to saying that a - b is divisible by n. Here are some immediate consequences. Obviously the only possible remainders after dividing by n are $0, 1, 2, \ldots, n-1$.

If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $a + c \equiv b + d \pmod{n}$.

If $a \equiv b \pmod{n}$ and then $ac \equiv bc \pmod{n}$ for any integer c.

A natural question is, if $ab \equiv 0 \pmod{n}$, does it follow that either $a \equiv 0 \pmod{n}$ or $b \equiv 0 \pmod{n}$ (or both)? This is false, as illustrated by the simple counterexample $2 \cdot 3 \equiv 0 \pmod{6}$, although neither 2 nor 3 are divisible by 6.

Similarly cancellation can fail: $2 \cdot 7 \equiv 2 \cdot 4 \pmod{6}$, although $7 \not\equiv 4 \pmod{6}$.

However, if n is a prime number, then life is simpler.

Theorem If p is a prime and $ab \equiv 0 \pmod{p}$, then either $a \equiv 0 \pmod{p}$ or $b \equiv 0 \pmod{p}$ (or both).

One reasonable approach to proving this is to use the fact that every integer n can be factored into a product of primes, as $52 = 2^2 \cdot 13$, and this factoring is unique except for possibly reordering the way this product is presented, as $52 = 13 \cdot 2^2$. However, the customary proof of this factorization into a product of primes uses this theorem so the reasoning would be circular. We'll simply accept the result.

¹For some other proofs see https://primes.utm.edu/notes/proofs/infinite/

Corollary If b and n have no common factors and $ab \equiv 0 \pmod{n}$, then a is divisible by n, that is, $a \equiv 0 \pmod{n}$.

Fermat's Little Theorem and Euler's Generalization

Fermat: If p is a prime and the integer a that is not a multiple of p, then $a^{p-1} \equiv 1 \pmod{p}$. An immediate consequence is $p \equiv a \pmod{p}$ for any a.

Proof: Using the previous theorem we first assert that the integers $a, 2a, 3a, \ldots (p-1)a$ are all distinct mod p. To see this, assume that $ka \equiv \ell a \pmod{p}$ for some integers $k \geq \ell$. This means that $(k - \ell)a$ is a multiple of p. But a is not divisible by p. Thus $k - \ell$ must be divisible by p. Since $1 \leq \ell < k < p - 1$, this is impossible. Since $a, 2a, 3a, \ldots (p-1)a$ are all distinct mod p, then mod p they must just be 1, $2, \ldots, p - 1$, possibly in some other order, so

$$(a)(2a)(3a)\cdots(p-1)a \equiv (1)(2)\cdots(p-1) \pmod{p},$$

that is

$$[a^{p-1} - 1](1)(2) \cdots (p-1) \equiv 0 \pmod{p}.$$
 (1)

Since $(1)(2)\cdots(p-1)$ is not divisible by p, then $a^{p-1} \equiv 1 \mod p$, as we wished to prove.

One can use this for the interesting (and useful to cryptography) application to show that certain numbers n are not prime without factoring them. For instance, one can show that n = 1763 is *not* a prime. If it were a prime, then by Fermat with a = 2, $2^{1762} \equiv 1 \pmod{1763}$. But by a direct computation $2^{1762} \equiv 742 \pmod{1763}$. This crude test is fairly efficient even for candidates n having several hundred digits.

Euler generalized Fermat's theorem to \pmod{n} where n is not necessarily a prime. The above proof of Fermat's Theorem fails since equation (1) becomes

$$[a^{p-1} - 1](1)(2) \cdots (n-1) \equiv 0 \pmod{n},\tag{2}$$

which may be trivially true because $(1)(2)\cdots(n-1)$ may be divisible by n, as happens even when n = 6. However, Euler observed that the above proof of Fermant's result still works if in the product $(a)(2a)(3a)\cdots(n-1)a$ one includes only the factor kawhen k and n have no common divisors (other than 1). For any integer let $\phi(n)$ be the number of integers $1, 2, \ldots, n-1$ that have no common divisors with n (we call this the *Euler* ϕ function).

EXAMPLE 1. If p is a prime, since none of 1, 2, ..., p-1 have a common divisor with p, then $\phi(p) = p - 1$.

EXAMPLE 2. We compute $\phi(10)$. Now 10 = 2 * 5 The only integers $1, 2, \ldots, 9$ that have a common factor with 10 are those that are divisible by either 2 or 5. These are the integers 2, 4, 6, 8, and 5. These are 4 + 1 = 5 integers so

$$\phi(10) = 9 - 5 = 4$$

EXAMPLE 3. Say n = pq, where p and q are distinct primes. We will compute $\phi(n)$. This is like the previous example.

Which numbers $1, 2, \ldots, pq - 1$ have a common divisor with pq? These common divisors can only be multiples of p or q, so they are:

$$p, 2p, 3p, \ldots, (q-1)p$$
 and $q, 2q, 3q, \ldots, (p-1)q$

Thus (q-1) + (p-1) integers are not relatively prime to pq so the rest are. The number is $\phi(pq) = (pq-1) - [(q-1) + (p-1)] = pq - p - q + 1$, that is

$$\phi(pq) = (p-1)(q-1) = \phi(p)\phi(q)$$

Euler's Generalization: If a is relatively prime to n, then $a^{\phi(n)} \equiv 1 \pmod{n}$. A useful immediate consequence is

$$a^{\phi(n)+1} \equiv a \pmod{n}. \tag{3}$$

Proof This just imitates the above proof of Fermant's Theorem. In equation (1) only use the factors $k_j a$ where k_j and n have no common divisor (other than 1). Obviously $k_1 = 1$. There are $\phi(n)$ such factors. Then equation (1) is replaced by

$$(a)(k_2a)(k_3a)\cdots(k_{\phi(n)}a) \equiv (1)(k_1)\cdots(k_{\phi(n)}) \pmod{n},$$

that is

$$[a^{\phi(n)} - 1](1)(k_2) \cdots (k_{\phi(n)}) \equiv 0 \pmod{n}.$$

Since none of $k_1, k_2, \ldots, k_{\phi(n)}$ have any common factors with n (other than 1), we conclude that $a^{\phi(n)} - 1$ must be divisible by n, as desired.

Special Case If a is relatively prime to pq for any distinct primes p, q, then $a^{(p-1)(q-1)} \equiv 1 \pmod{pq}$.

The next corollary states that if n = pq we can drop the assumption that a is relatively prime to pq.

Corollary Let n = pq, where p and q are primes. Then for any integers a and k we have $a^{k\phi(n)+1} \equiv a \pmod{n}$. [If n = p and k = 1 this is Fermat's Theorem].

Exercise: If n = 10, verify this with a = 8 and a = 6.

Proof of the Corollary

CASE 1. If a is divisible by both p and q, the assertion is obvious.

CASE 2. If a is not divisible by either p or q, then a is relatively prime to n = pq so this follows from the special case of Euler's generalization of Fermat's theorem.

CASE 3. If a is divisible by one of p and q, say p but not q, then clearly $a^{k\phi(n)+1}-a = a[a^{k\phi(n)}-1]$ is divisible by p.

Since a is not divisible by q, then by Fermat's theorem $a^{\phi(q)} = a^{q-1} \equiv 1 \pmod{q}$ so

$$a^{k\phi(n)} = [a^{\phi(q)}]^{k\phi(p)} \equiv 1^{k\phi(p)} \equiv 1 \pmod{q}.$$

In other words, $a^{k\phi(n)} - 1$ is divisible by q. Consequently

$$a^{k\phi(n)+1} \equiv a \pmod{q}.$$

Thus $a^{\phi(n)+1} - a$ is divisible by both p and q so it is divisible by pq. QED

Computing $a^k \pmod{n}$ efficiently (to encrypt messages)

We need to be efficient since computing a^k directly. For instance 12^{15} is too large to compute on most calculators. The idea is to observe that if you have computed $b \pmod{n}$, then it is easy to compute $b^2 \pmod{n}$. To use this observation write kas a sum of powers of 2, that is, in base 2. For instance, to compute $12^{15} \pmod{6}$ write $15 = 2^3 + 2^2 + 2^1 + 2^0 =_{\text{base } 2} 1111$. Then

$$12^{15} \equiv 12^{(2^3)} \cdot 12^{(2^2)} \cdot 12^{(2^1)} \cdot 12^{(2^0)}.$$

Notice that each of the factors on the right side is the square of the factor to its right; for instance $12^{(2^2)} = [12^{(2^1)}]^2$, so, beginning from the final factor on the right, one can efficiently compute the successive factors mod 6. As an exercise, carry this out on a small calculator – where computing 12^{15} directly would be impossible.

The following is a recipe that carries out this procedure to compute $a^k \pmod{n}$ efficiently. It is straightforward to make this into a computer program.

x = 1 (Initialize the answer x. At the end $x \equiv a^k \pmod{n}$.)

while k > 0 repeat:

- e = 0 if k is even, e = 1 if k is odd, so e = k 2[k/2] (here [k/2] means the largest integer in k/2, so [5/2] = 2 and [6/2] = 3).
- If e = 1, replace x by ax and reduce mod n (if e = 0 do nothing).
- Replace a by a^2 and reduce this mod n.
- Replace k by (k e)/2, that is, drop the unit digit in the binary expansion of k and shift the remaining digits one place to the right.

When done (so k = 0), then $x \equiv a^k \pmod{n}$, as desired. You might find it interesting to ponder how this implements the procedure; I'd use it to compute both $12^{15} \pmod{6}$ and $12^{13} \pmod{6}$ on a hand calculator.

Alice \rightarrow Bob (by Rivest, Shamir, & Adelman, aka RSA)

TASK: Alice wants to send a message to Bob, say in a letter, but wants to keep its contents a secret from anyone along the way who might steal the letter and read it. She uses *public key cryptography*. This relies on the widely believed but *unproved* assumption that it is difficult to factor a large number (say 200 digits) that is the product of two large primes.

PUBLIC, KNOWN TO EVERYONE: (n, e) = Bob's *public key*, where

- $n = p \times q$, where p and q are primes known *only* to Bob.
- e: satisfying e < n and relatively prime to $\phi(n) = (p-1)(q-1)$. e is the public exponent.

An essential ingredient here is that there is a trusted repository for public keys. If you look there, the keys you get will be valid.

PRIVATE, KNOWN ONLY TO BOB:

- The above primes p and q.
- The private exponent d with the property that ed-1 is divisible by (p-1)(q-1), that is, $ed \equiv 1 \pmod{\phi(n)}$, which is equivalent to $ed = k\phi(n) + 1$ for some integer k.

EXAMPLE 4: p = 23, q = 97 so n = pq = 2231

(p-1)(q-1) = 22 * 96 = 2112 so say e = 5.

We want ed - 1 = k(p-1)(q-1) for some k, that is, 5d = 1 + 2112 * k. k = 2 works so d = 4225/5 = 845 is OK.

EXAMPLE 5: p = 97, q = 109 so n = pq = 10573 and (p-1)(q-1) = 96*108 = 10368 so say e = 11. We want ed - 1 = k(p-1)(q-1) for some k, that is, 11d = 1 + 10368 * k. k = 9 works so d = 8483 is OK.

For those who know more algebra, since

$$ed \equiv 1 \pmod{\phi(n)},$$

d is the multiplicative inverse of e and can always be found using the Euclidean algorithm.

ALICE ENCRYPTS THE MESSAGE FOR BOB:

Say the message has been transformed into an integer $0 \le M < n$ (if the message is longer than *n* digits, then first break it into smaller p;arts, each of which has less than *n* digits). Her encrypted message is:

 $m \equiv M^e \pmod{n}$ (trapdoor function).

BOB DECRYPTS THE MESSAGE: He computes $m^d \pmod{n}$.

CLAIM: $m^d = M$, so Bob has recovered Alice's message. PROOF: Since $m = M^e$, then $m^d \pmod{n} \equiv M^{ed} \pmod{n}$. But d was chosen so that $ed \equiv 1 \pmod{\phi(n)}$. Consequently $ed = k\phi(n) + 1$ for some integer k. Thus by the Corollary

$$M^{ed} = M^{k\phi(n)+1} \equiv M \pmod{n}.$$

Trapdoor Functions for Private Communication

The above encryption/decryption procedure satisfies the criteria proposed earlier by Diffie and Hellman (1976).

- It will change any positive integer x into a unique positive integer y.
- It has an inverse that changes y back to x.
- Efficient algorithms exist to compute both the forward function and its inverse.
- If only the function and its forward algorithm are known, it is computably infeasible to discover the inverse algorithm.

Digital Signatures:

Alice want to send her "signature" to Bob to send her some money. The signature is not secret. Bob wants to know that:

1. The signature has not been tampered with.

2. It really is from Alice.

PROCEDURE:

Alice makes a digital signature $s \equiv S^d \pmod{n}$ where (n, d) are Alice's own private key and S < n is her public signature.

She sends both s and S to Bob.

Bob computes $x \equiv s^e \pmod{n}$, where (n, e) are Alice's public key. If x = S, then he is assured the message is both authentic and from Alice.

Proof:

$$x \equiv s^e \pmod{n} \equiv S^{ed} \pmod{n} \equiv S \pmod{n}$$