Jerry L. Kazdan

Distance From a Point To a Line

1. Find the distance from the point P = (2,3) to the straight line $\mathcal{L} := \{(x,y) \in \mathbb{R}^2 : x + 2y = 0\}.$

SOLUTION: Method 1. Let Q = (x, y) be a point on the line and U = (1, 2). Then the equation of the line means that $\langle Q, U \rangle = 0$ so the vector U is orthogonal to the points on the line.

$$\mathcal{L}_0 = \{ Q \in \mathbb{R}^2 : \langle Q, U \rangle = 0 \}.$$
(1)

To find the distance from P to \mathcal{L}_{ℓ} we find the orthogonal projection of P onto a *unit* vector \hat{U} , in the direction of U, so $\hat{U} = U/\sqrt{5}$. Now

$$P = c\hat{U} + W$$
, where $W \perp \hat{U}$.

Taking the inner product of both sides with \hat{U} we find

$$\langle P, \hat{U} \rangle = c \langle \hat{U}, \hat{U} \rangle, \quad \text{so} \quad c = \frac{\langle P, \hat{U} \rangle}{\|\hat{U}\|^2} = \frac{8}{\sqrt{5}}.0$$

The desired projection is distance is $|c| = 8/\sqrt{5}$. Note $W = P - c\hat{U} = \frac{1}{5}(2, -1)$.

Method 2 (calculus). We think of the points on line as the path of a particle at time t. Let V = (2, -1) (think of V as a velocity vector). Then

$$\mathcal{L}_0 = \{ Q \in \mathbb{R}^2 : Q(t) = tV \text{ for some } t \in \mathbb{R}.$$

We want to t_0 to minimize $h(t) := ||P - Q(t)||^2$, so

$$0 = h'(t) = 2\langle P - Q(t), -Q'(t) \rangle = 2\langle P - tV, -V \rangle$$

which gives $t_0 = \langle P, V \rangle / ||V||^2 = 1/5$ and $t_0 V = \frac{1}{5}(2, -1)$ is the point on the line that is closest to P. This is the same as the point W found above. Also $P - t_0 V = \frac{8}{5}(1, 2) = c\hat{U}$ found above. In particular, the distance from P to the line is

$$\|P - t_0 V\| = 8/\sqrt{5}.$$

2. Find the distance from the point P = (2,3) to the straight line $\mathcal{L}_1 := \{(x,y) \in \mathbb{R}^2 : x + 2y = 3\}$. The change from the previous example is that this line does not pass through the origin.

SOLUTION: Method 1. Let Q = (x, y) be a point on the line and U = (1, 2). Then the equation of the line means that $\langle Q, U \rangle = 3$. Pick a specific point Q_0 on the line, say $Q_0 = (1, 1)$ (in the previous example we let $Q_0 = (0, 0)$). Then the equation of the line is $\langle Q, U \rangle = \langle Q_0, U \rangle$, That is, $\langle Q - Q_0, U \rangle = 0$, be so the vector U is orthogonal to $Q - Q_0$.

To find the distance from P to \mathcal{L}_1 we find the orthogonal projection of $P - Q_0$ onto the *unit vector* \hat{U} , in the direction of U, so $\hat{U} = U/\sqrt{5}$. Now

$$P - Q_0 = c\hat{U} + W$$
, where $W \perp \hat{U}$.

Taking the inner product of both sides with \hat{U} , since $P - Q_0 = (1, 2)$ we find

$$\langle P - Q_0, \hat{U} \rangle = c \langle \hat{U}, \hat{U} \rangle, \quad \text{so} \quad c = \frac{\langle P - Q_0, \hat{U} \rangle}{\|\hat{U}\|^2} = \frac{5}{\sqrt{5}} = \sqrt{5}.$$

The desired projection is distance is $|c| = \sqrt{5}$. Note in this case, by chance choice of Q_0 , that $W = (P - Q_0) - c\hat{U} = 0$.

Method 2 (calculus). This works for a straight line in \mathbb{R}^n .

Let $Z \in \mathbb{R}^n$ be a point and \mathcal{L} the straight line

$$\mathcal{L} = \{ X \in \mathbb{R}^n \, | \, X = X_0 + tV \},\$$

where $X_0 \in \mathbb{R}^n$ is a specified point, $V \in \mathbb{R}^n$ is a unit vector, and $t \in \mathbb{R}$ (think of X(t) as the position of a particle at time t). Since adding a multiple of V to X_0 does not change the line, we may assume that X_0 is orthogonal to V, so $\langle X_0, V \rangle = 0$. Then for fixed V and various X_0 define parallel lines whose distance from the origin is $||X_0||$.

Compute the (Euclidean) distance from Z to the line.

SOLUTION: We minimize

$$\varphi(t) = \|Z - (X_0 + tV)\|^2.$$

At a minimum,

$$0 = \varphi'(t) = 2\langle Z - (X_0 + tV), -V \rangle.$$

Because ||V|| = 1 then $t = \langle Z - X_0, V \rangle = \langle Z, V \rangle$ and hence

Distance²(Z,
$$\mathcal{L}$$
) = $||Z - X_0 - \langle Z, V \rangle V||^2$
= $||Z - X_0||^2 - \langle Z, V \rangle^2$.

Because $\langle Z, V \rangle V$ is just the orthogonal projection of Z into \mathcal{L} , this formula is also a geometrically obvious consequence of the Pythagorean Theorem.