Distance From a Point To a Line

1. Find the distance from the point $P=(2,3)$ to the straight line $\mathcal{L}:=\left\{(x, y) \in \mathbb{R}^{2}\right.$: $x+2 y=0\}$.
Solution: Method 1. Let $Q=(x, y)$ be a point on the line and $U=(1,2)$. Then the equation of the line means that $\langle Q, U\rangle=0$ so the vector U is orthogonal to the points on the line.

$$
\begin{equation*}
\mathcal{L}_{0}=\left\{Q \in \mathbb{R}^{2}:\langle Q, U\rangle=0\right\} . \tag{1}
\end{equation*}
$$

To find the distance from P to \mathcal{L}, we find the orthogonal projection of P onto a unit vector \hat{U}, in the direction of U, so $\hat{U}=U / \sqrt{5}$. Now

$$
P=c \hat{U}+W, \quad \text { where } \quad W \perp \hat{U} .
$$

Taking the inner product of both sides with \hat{U} we find

$$
\langle P, \hat{U}\rangle=c\langle\hat{U}, \hat{U}\rangle, \quad \text { so } \quad c=\frac{\langle P, \hat{U}\rangle}{\|\hat{U}\|^{2}}=\frac{8}{\sqrt{5}} .0
$$

The desired projection is distance is $|c|=8 / \sqrt{5}$. Note $W=P-c \hat{U}=\frac{1}{5}(2,-1)$.
Method 2 (calculus). We think of the points on line as the path of a particle at time t. Let $V=(2,-1)$ (think of V as a velocity vector). Then

$$
\mathcal{L}_{0}=\left\{Q \in \mathbb{R}^{2}: Q(t)=t V \quad \text { for some } \quad t \in \mathbb{R} .\right.
$$

We want to t_{0} to minimize $h(t):=\|P-Q(t)\|^{2}$, so

$$
0=h^{\prime}(t)=2\left\langle P-Q(t),-Q^{\prime}(t)\right\rangle=2\langle P-t V,-V\rangle
$$

which gives $t_{0}=\langle P, V\rangle /\|V\|^{2}=1 / 5$ and $t_{0} V=\frac{1}{5}(2,-1$ is the point on the line that is closest to P. This is the same as the point W found above. Also $P-t_{0} V=\frac{8}{5}(1,2)=c \hat{U}$ found above. In particular, the distance from P to the line is

$$
\left\|P-t_{0} V\right\|=8 / \sqrt{5}
$$

2. Find the distance from the point $P=(2,3)$ to the straight line $\mathcal{L}_{1}:=\left\{(x, y) \in \mathbb{R}^{2}\right.$: $x+2 y=3\}$. The change from the previous example is that this line does not pass through the origin.

Solution: Method 1. Let $Q=(x, y)$ be a point on the line and $U=(1,2)$. Then the equation of the line means that $\langle Q, U\rangle=3$. Pick a specific point Q_{0} on the line, say $Q_{0}=(1,1)$ (in the previous example we let $Q_{0}=(0,0)$). Then the equation of the line is $\langle Q, U\rangle=\left\langle Q_{0}, U\right\rangle$, That is, $\left\langle Q-Q_{0}, U\right\rangle=0$, be so the vector U is orthogonal to $Q-Q_{0}$.

To find the distance from P to \mathcal{L}_{1} we find the orthogonal projection of $P-Q_{0}$ onto the unit vector \hat{U}, in the direction of U, so $\hat{U}=U / \sqrt{5}$. Now

$$
P-Q_{0}=c \hat{U}+W, \quad \text { where } \quad W \perp \hat{U} .
$$

Taking the inner product of both sides with \hat{U}, since $P-Q_{0}=(1,2)$ we find

$$
\left\langle P-Q_{0}, \hat{U}\right\rangle=c\langle\hat{U}, \hat{U}\rangle, \quad \text { so } \quad c=\frac{\left\langle P-Q_{0}, \hat{U}\right\rangle}{\|\hat{U}\|^{2}}=\frac{5}{\sqrt{5}}=\sqrt{5}
$$

The desired projection is distance is $|c|=\sqrt{5}$. Note in this case, by chance choice of Q_{0}, that $W=\left(P-Q_{0}\right)-c \hat{U}=0$.

Method 2 (calculus). This works for a straight line in \mathbb{R}^{n}.
Let $Z \in \mathbb{R}^{n}$ be a point and \mathcal{L} the straight line

$$
\mathcal{L}=\left\{X \in \mathbb{R}^{n} \mid X=X_{0}+t V\right\},
$$

where $X_{0} \in \mathbb{R}^{n}$ is a specified point, $V \in \mathbb{R}^{n}$ is a unit vector, and $t \in \mathbb{R}$ (think of $X(t)$ as the position of a particle at time t). Since adding a multiple of V to X_{0} does not change the line, we may assume that X_{0} is orthogonal to V, so $\left\langle X_{0}, V\right\rangle=0$. Then for fixed V and various X_{0} define parallel lines whose distance from the origin is $\left\|X_{0}\right\|$.

Compute the (Euclidean) distance from Z to the line.
Solution: We minimize

$$
\varphi(t)=\left\|Z-\left(X_{0}+t V\right)\right\|^{2} .
$$

At a minimum,

$$
0=\varphi^{\prime}(t)=2\left\langle Z-\left(X_{0}+t V\right),-V\right\rangle .
$$

Because $\|V\|=1$ then $t=\left\langle Z-X_{0}, V\right\rangle=\langle Z, V\rangle$ and hence

$$
\begin{aligned}
\operatorname{Distance}^{2}(Z, \mathcal{L}) & =\left\|Z-X_{0}-\langle Z, V\rangle V\right\|^{2} \\
& =\left\|Z-X_{0}\right\|^{2}-\langle Z, V\rangle^{2} .
\end{aligned}
$$

Because $\langle Z, V\rangle V$ is just the orthogonal projection of Z into \mathcal{L}, this formula is also a geometrically obvious consequence of the Pythagorean Theorem.

