Problem Set 4

DUE: In class Tues. Feb. 19 [Late papers will be accepted until 1:00 PM Wed].

Lots of problems this week. Fortunately a number of them are short – but don’t wait until Monday night!

Most of these problems should be a review of the basic linear algebra of Math 240, but emphasizing thinking of a system of linear equations as a linear mapping. They should be very short. In class on we’ll discuss this more.

Problems

1. If A is a 5×5 matrix with $\det A = -1$, compute $\det(-2A)$.

2. Consider the system of equations

$$
\begin{align*}
x + y - z &= a \\
x - y + 2z &= b.
\end{align*}
$$

a) Find the general solution of the homogeneous equation, so $a = b = 0$.

b) A particular solution of the inhomogeneous equations when $a = 1$ and $b = 2$ is $x = 1, y = 1, z = 1$. Find the most general solution of the inhomogeneous equations.

c) Find some particular solution of the inhomogeneous equations when $a = -1$ and $b = -2$.

d) Find some particular solution of the inhomogeneous equations when $a = 3$ and $b = 6$.

[Remark: After you have done part a), it is possible immediately to write the solutions to the remaining parts.]

3. Solve the given system – or show that no solution exists:

$$
\begin{align*}
x + 2y &= 1 \\
3x + 2y + 4z &= 7 \\
-2x + y - 2z &= -1
\end{align*}
$$

4. Say you have k linear algebraic equations in n variables; in matrix form we write $AX = Y$. Give a proof or counterexample for each of the following.

a) If $n = k$ there is always at most one solution.

b) If $n > k$ you can always solve $AX = Y$.

1
c) If \(n > k \) the homogeneous equation \(AX = 0 \) has at least one solution \(X \neq 0 \).

d) If \(n < k \) then for some \(Y \) there is no solution of \(AX = Y \).

e) If \(n < k \) the only solution of \(AX = 0 \) is \(X = 0 \).

5. Let \(A : \mathbb{R}^n \rightarrow \mathbb{R}^k \) be a real matrix, not necessarily square. If two rows of \(A \) are the same, show that \(A \) is not onto by finding a vector \(y = (y_1, \ldots, y_k) \) that is not in the image of \(A \). [Hint: This is a mental computation if you write out the equations \(Ax = y \) explicitly.]

6. Let \(A : \mathbb{R}^n \rightarrow \mathbb{R}^k \) be a real matrix, not necessarily square. If two columns of \(A \) are the same, show that \(A \) is not one-to-one by finding a vector \(x = (x_1, \ldots, x_n) \) that satisfies \(Ax = 0 \).

7. The following 2 × 2 matrices are valuable examples that may be surprising

\[
P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad R = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad C = PR = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.
\]

Geometrically, \(P \) is an orthogonal projection onto the \(x_1 \) axis, that is, if \(X = (x_1, x_2) \in \mathbb{R}^2 \) is a (column) vector in the plane, then \(PX \) is its orthogonal projection onto the \(x_1 \) axis. Similarly, \(R \) is a rotation by 90 degrees clockwise.

Compute (and interpret geometrically):

\(P^2, \ P^3, \ R^2, \ R^3, \ R^4, \ PR, \ RP, \ C^2, \ CP, \ PC \).

8. Let \(A \) and \(B \) be \(n \times n \) matrices with \(AB = 0 \). Give a proof or counterexample for each of the following.

a) Either \(A = 0 \) or \(B = 0 \) (or both).

b) \(BA = 0 \)

c) If \(\det A = -3 \), then \(B = 0 \).

d) If \(B \) is invertible then \(A = 0 \).

e) There is a vector \(V \neq 0 \) such that \(BAV = 0 \).

9. Let \(A \) be a 4 × 4 matrix with determinant 7. Give a proof or counterexample for each of the following.

a) For some vector \(b \) the equation \(Ax = b \) has exactly one solution.

1The computer graphics examples in https://www.math.upenn.edu/~kazdan/320F18/notes/Maple/F1.pdf may also be illuminating.
b) For some vector \(\mathbf{b} \) the equation \(A \mathbf{x} = \mathbf{b} \) has infinitely many solutions.

c) For some vector \(\mathbf{b} \) the equation \(A \mathbf{x} = \mathbf{b} \) has no solution.

d) For all vectors \(\mathbf{b} \) the equation \(A \mathbf{x} = \mathbf{b} \) has at least one solution.

10. a) Find a \(2 \times 2 \) matrix that rotates the plane by +45 degrees (+45 degrees means 45 degrees counterclockwise).

b) Find a \(2 \times 2 \) matrix that rotates the plane by +45 degrees followed by a reflection across the horizontal axis.

c) Find a \(2 \times 2 \) matrix that reflects across the horizontal axis followed by a rotation the plane by +45 degrees.

d) Find a matrix that rotates the plane through +60 degrees, keeping the origin fixed.

e) Find the inverse of each of these maps.

11. Find a real \(2 \times 2 \) matrix \(A \) (other than \(A = I \)) such that \(A^5 = I \).

12. Proof or counterexample. In these \(L \) is a linear map from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \), so its representation will be as a \(2 \times 2 \) matrix.

a) If \(L \) is invertible, then \(L^{-1} \) is also invertible.

b) If \(LV = 5V \) for all vectors \(V \), then \(L^{-1}W = (1/5)W \) for all vectors \(W \).

c) If \(L \) is a rotation of the plane by 45 degrees counterclockwise, then \(L^{-1} \) is a rotation by 45 degrees clockwise.

d) If \(L \) is a rotation of the plane by 45 degrees clockwise, then \(L^{-1} \) is a rotation by 315 degrees counterclockwise.

e) The zero map (\(0V = 0 \) for all vectors \(V \)) is invertible.

f) The identity map (\(IV = V \) for all vectors \(V \)) is invertible.

g) If \(L \) is invertible, then \(L^{-1}0 = 0 \).

h) If \(LV = 0 \) for some non-zero vector \(V \), then \(L \) is not invertible.

i) The identity map (say from the plane to the plane) is the only linear map that is its own inverse: \(L = L^{-1} \).

13. Let \(A \) be a matrix, not necessarily square. Say \(\mathbf{V} \) and \(\mathbf{W} \) are particular solutions of the equations \(A \mathbf{V} = \mathbf{Y}_1 \) and \(A \mathbf{W} = \mathbf{Y}_2 \), respectively, while \(\mathbf{Z} \neq 0 \) is a solution of the homogeneous equation \(A \mathbf{Z} = 0 \). Answer the following in terms of \(\mathbf{V} \), \(\mathbf{W} \), and \(\mathbf{Z} \).

a) Find some solution of \(A \mathbf{X} = 3 \mathbf{Y}_1 \).

b) Find some solution of \(A \mathbf{X} = -5 \mathbf{Y}_2 \).

c) Find some solution of \(A \mathbf{X} = 3 \mathbf{Y}_1 - 5 \mathbf{Y}_2 \).
d) Find another solution (other than Z and 0) of the homogeneous equation $AX = 0$.

e) Find two solutions of $AX = Y_1$.

f) Find another solution of $AX = 3Y_1 - 5Y_2$.

g) If A is a square matrix, then $\det A = ?$

h) If A is a square matrix, for any given vector W can one always find at least one solution of $AX = W$? Why?

14. Let R, M, and N be linear maps from the (two dimensional) plane to the plane given in terms of the standard i, j basis vectors by:

\[Ri = j, \quad Rj = -i, \quad Mi = -i, \quad Mj = j \quad Nv = -v \quad \text{for all vectors } v \]

a) Describe (pictures?) the actions of the maps $R, R^2, R^{-1}, M, M^2, M^{-1}$ and N.

b) Describe the actions of the maps RM, MR, RN, NR, MN, and NM [here we use the standard convention that the map RM means first use M then R]. Which pairs of these maps commute?

c) Which of the following identities are correct—and why?

1) $R^2 = N$
2) $N^2 = I$
3) $R^4 = I$
4) $R^5 = R$
5) $M^2 = I$
6) $M^3 = M$
7) $MNM = N$
8) $NMN = R$

d) Find matrices representing each of the maps R, R^2, R^{-1}, M, and N.

15. a). Find a linear map of the plane, $A : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ that does the following transformation of the letter F (here the smaller F is transformed to the larger one):

![Graph showing linear transformation of letter F]

b). Find a linear map of the plane that inverts this map, that is, it maps the larger F to the smaller.
16. Linear maps \(F(X) = AX \), where \(A \) is a matrix, have the property that \(F(0) = A0 = 0 \), so they necessarily leave the origin fixed. It is simple to extend this to include a translation,

\[
F(X) = V + AX,
\]

where \(V \) is a vector. Note that \(F(0) = V \).

Find the vector \(V \) and the matrix \(A \) that describe each of the following mappings [here the light blue \(F \) is mapped to the dark red \(F \)].

![Graphs showing mappings](image)

Bonus Problem

[Please give solutions directly to Professor Kazdan]

1-B [How to Rotate a Mattress]. It is standard to rotate a mattress so that it wears more evenly. For this task, one needs to understand the symmetries of a mattress – which is just a rectangular box whose height, width, and length are distinct.

[As a warm-up, understand all the symmetries of a square.]

[Last revised: February 12, 2019]