Problem Set 0

Due: Never

This is rust remover. Essentially all of the ideas needed for these problems should have been covered in the prerequisite courses. No messy computations are needed – but some serious thinking may be needed. Notation: \(u_t = \frac{\partial u}{\partial t} \).

1. Let \(u(t) \) be the solution of \(u' = 3u \) with initial value \(u(0) = A > 0 \). At what time \(T \) is \(u(T) = 2A \)?

2. Let \(u(t) \) be the amount of a radioactive element at time \(t \) and say initially, \(u(0) = A > 0 \). The rate of decay is proportional to the amount present, so
\[
\frac{du}{dt} = -cu,
\]
where the constant \(c > 0 \) determines the decay rate. The half-life \(T \) is the amount of time for half of the element to decay, so \(u(T) = \frac{1}{2}u(0) \). Find \(c \) in terms of \(T \) and obtain a formula for \(u(t) \) in terms of \(T \).

3. Let \(\int_0^x f(t) \, dt = e^{\cos(3x)} + A \), where \(f \) is some continuous function. Find \(f \) and the constant \(A \).

4. a) If \(u'' + 4u = 0 \) with initial conditions \(u(0) = 1 \) and \(u'(0) = -2 \), compute \(u(t) \).
 b) Find a particular solution of the inhomogeneous equation \(u'' + 4u = 8 \).
 c) Find a particular solution of the inhomogeneous equation \(u'' + 4u = -4t \).
 d) Find a particular solution of the inhomogeneous equation \(u'' + 4u = -8 - 8t \).
 e) Find the most general solution of the inhomogeneous equation \(u'' + 4u = 8 - 8t \).
 f) If \(f(t) \) is any continuous function, use the method “variation of parameters” (look it up if you don’t know it) to find a formula for a particular solution of \(u'' + 4u = f(t) \).

5. Let \(u(t) \) be any solution of \(u'' + 2bu' + 4u = 0 \). If \(b > 0 \) is a constant, show that \(\lim_{t \to \infty} u(t) = 0 \).

6. a) If \(u'' - 4u = 0 \) with initial conditions \(u(0) = 1 \) and \(u'(0) = -2 \), compute \(u(t) \).
 b) Find a particular solution of the inhomogeneous equation \(u'' - 4u = 8 \).
 c) Find a particular solution of the inhomogeneous equation \(u'' - 4u = -4t \).
d) Find a particular solution of the inhomogeneous equation $u'' - 4u = -8 - 8t$.
e) Find the most general solution of the inhomogeneous equation $u'' - 4u = 8 - 8t$.
f) If $f(t)$ is any continuous function, use the method “variation of parameters” (look it up if you don’t know it) to find a formula for a particular solution of $u'' - 4u = f(t)$.

7. Say $w(t)$ satisfies the differential equation

$$aw''(t) + bw' + cw(t) = 0, \tag{1}$$

where a and c, are positive constants and $b \geq 0$. Let $E(t) = \frac{1}{2}[aw'^2 + cw^2]$.

a) Without solving the differential equation, show that $E'(t) \leq 0$.

b) Use this to show that If you also know that $w(0) = 0$ and $w'(0) = 0$, then $w(t) = 0$ for all $t \geq 0$.

c) [Uniqueness] Say the functions $u(t)$ and $v(t)$ both satisfy the same equation (1) and also $u(0) = v(0)$ and $u'(0) = v'(0)$. Show that $u(t) = v(t)$ for all $t \geq 0$.

8. Say $u(x, t)$ has the property that $\frac{\partial u}{\partial t} = 2$ for all points $(x, t) \in \mathbb{R}^2$.

a) Find some such function $u(x, t)$.

b) Find the most general such function $u(x, t)$.

c) If $u(x, 0) = \sin 3x$, find $u(x, t)$.

d) If instead u satisfies $\frac{\partial u}{\partial t} = 2xt$, still with $u(x, 0) = \sin 3x$, find $u(x, t)$.

9. Say $u(x, t)$ has the property that $\frac{\partial u}{\partial t} = 3u$ for all points $(x, t) \in \mathbb{R}^2$.

a) Find some such function – other than the trivial $u(x, t) \equiv 0$.

b) Find the most general such function.

c) If $u(x, t)$ also satisfies the initial condition $u(x, 0) = \sin 3x$, find $u(x, t)$.

10. a) If $u(x, t) = \cos(x - 3t) + 2(x - 3t)^7$, show that $3u_x + u_t = 0$.

b) If $f(s)$ is any smooth function of s and $u(x, t) = f(x - 3t)$, show that $3u_x + u_t = 0$.

11. A function $u(x, y)$ satisfies $3u_x + u_t = 0$. Find an invertible linear change of variables

$$r = ax + bt$$

$$s = cx + dt,$$
where \(a, b, c, d \) are constants, so that in the new \((r, s)\) variables \(u \) satisfies \(\frac{\partial u}{\partial s} = 0. \)

[Remark: There are many possible such changes of variable. The point is to reduce \(3u_x + u_t = 0 \) to the much simpler \(u_s = 0. \)]

12. Let \(S \) and \(T \) be linear spaces, such as \(\mathbb{R}^3 \) and \(\mathbb{R}^7 \) and \(L : S \to T \) be a linear map; thus, for any vectors \(X, Y \) in \(S \) and any scalar \(c \)

\[
L(X + Y) = LX + LY \quad \text{and} \quad L(cX) = cL(x).
\]

Say \(V_1 \) and \(V_2 \) are (distinct!) solutions of the equation \(LX = Y_1 \) while \(W \) is a solution of \(LX = Y_2 \). Answer the following in terms of \(V_1, V_2, \) and \(W \).

a) Find some solution of \(LX = 2Y_1 - 7Y_2. \)
b) Find another solution (other than \(W \)) of \(LX = Y_2. \)

13. The following is a table of inner ("dot") products of vectors \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{w}. \)

<table>
<thead>
<tr>
<th></th>
<th>(\mathbf{u})</th>
<th>(\mathbf{v})</th>
<th>(\mathbf{w})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{u})</td>
<td>4</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>(\mathbf{v})</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>(\mathbf{w})</td>
<td>8</td>
<td>3</td>
<td>50</td>
</tr>
</tbody>
</table>

For example, \(\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v} = 3. \)

a) Find a unit vector in the same direction as \(\mathbf{u}. \)
b) Compute \(\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}). \)
c) Compute \(\|\mathbf{v} + \mathbf{w}\|. \)
d) Find the orthogonal projection of \(\mathbf{w} \) into the plane \(E \) spanned by \(\mathbf{u} \) and \(\mathbf{v}. \) [Express your solution as linear combinations of \(\mathbf{u} \) and \(\mathbf{v}. \)]
e) Find a unit vector orthogonal to the plane \(E. \)
f) Find an orthonormal basis of the three dimensional space spanned by \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{w}. \)

14. Let \(z \) and \(w \) be complex numbers.

a) Write the complex number \(z = \frac{1}{3 + 4i} \) in the form \(z = a + ib \) where \(a \) and \(b \) are real numbers.
b) Show that \((zw) = \bar{z} \bar{w}. \)
c) Show that \(|z|^2 = z \bar{z}. \)
d) show that \(|zw| = |z||w|. \)
15. If \(z = x + iy \) is a complex number, one way to define \(e^z \) is by the power series

\[
e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots + \frac{z^k}{k!} + \cdots = \sum_{n=0}^{\infty} \frac{z^n}{n!}.
\]

(2)

a) Using the usual (real) power series for \(\cos y \) and \(\sin y \), show that

\[e^{iy} = \cos y + i \sin y.\]

b) Use this to show that \(\cos y = \frac{e^{iy} + e^{-iy}}{2} \) and \(\sin y = \frac{e^{iy} - e^{-iy}}{2i}. \)

c) Using equation (2), one can show that \(e^{z+w} = e^z e^w \) for any complex numbers \(z \) and \(w \) (accept this for now). Consequently

\[e^{i(x+y)} = e^{ix} e^{iy}.\]

Use the result of part (a) to show that this implies the usual formulas for \(\cos(x+y) \) and \(\sin(x+y) \).

16. Let \(D \subset \mathbb{R}^2 \) be a bounded (connected) region with smooth boundary \(B \). If \(u(x, y) \) is a “smooth” function, write \(\Delta u = u_{xx} + u_{yy} \) (we call \(\Delta \) the Laplace operator).

Suggestion: First do this problem for a function of one variable, \(u(x) \), so \(\Delta u = u'' \) and, say, \(D \) is the interval \(\{0 < x < 1\} \).

a) Show that \(u\Delta u = \nabla \cdot (u\nabla u) - |\nabla u|^2. \)

b) If \(u(x, y) = 0 \) on \(B \). Show that

\[\iint_D u\Delta u \, dx \, dy = -\iint_D |\nabla u|^2 \, dx \, dy. \]

c) If \(\Delta u = 0 \) in \(D \) and \(u = 0 \) on the boundary \(B \), show that \(u(x, y) = 0 \) throughout \(D \).

[Last revised: January 23, 2015]