Problem Set 1

Due: Thurs. Jan. 22 in class. [Late papers will be accepted until 1:00 PM Friday.]

This is rust remover. It is essentially Homework Set 0 with a few modifications. Notation:
\[u_t = \frac{\partial u}{\partial t}. \]

This week. Please read all of Chapter 1 in the Haberman text.

1. Let \(u(t) \) be the solution of \(u' = 3u \) with initial value \(u(0) = A > 0 \). At what time \(T \) is \(u(T) = 2A? \)

2. Let \(u(t) \) be the amount of a radioactive element at time \(t \) and say initially, \(u(0) = A > 0 \). The rate of decay is proportional to the amount present, so
\[
\frac{du}{dt} = -cu,
\]
where the constant \(c > 0 \) determines the decay rate. The half-life \(T \) is the amount of time for half of the element to decay, so \(u(T) = \frac{1}{2}u(0) \). Find \(c \) in terms of \(T \) and obtain a formula for \(u(t) \) in terms of \(T \).

3. Let \(\int_0^x f(t) \, dt = e^{\cos(3x)} + A \), where \(f \) is some continuous function. Find \(f \) and the constant \(A \).

4. a) If \(u'' + 4u = 0 \) with initial conditions \(u(0) = 1 \) and \(u'(0) = -2 \), compute \(u(t) \).
 b) Find a particular solution of the inhomogeneous equation \(u'' + 4u = 8 \).
 c) Find a particular solution of the inhomogeneous equation \(u'' + 4u = -4t \).
 d) Find a particular solution of the inhomogeneous equation \(u'' + 4u = -8 - 8t \).
 e) Find the most general solution of the inhomogeneous equation \(u'' + 4u = 8 - 8t \).
 f) If \(f(t) \) is any continuous function, use the method “variation of parameters” (look it up if you don’t know it) to find a formula for a particular solution of \(u'' + 4u = f(t) \).

5. Let \(u(t) \) be any solution of \(u'' + 2bu' + 4u = 0 \). If \(b > 0 \) is a constant, show that \(\lim_{t \to \infty} u(t) = 0 \).

6. a) If \(u'' - 4u = 0 \) with initial conditions \(u(0) = 1 \) and \(u'(0) = -2 \), compute \(u(t) \).
 b) Find a particular solution of the inhomogeneous equation \(u'' - 4u = 8 \).
 c) Find a particular solution of the inhomogeneous equation \(u'' - 4u = -4t \).
7. Say \(w(t) \) satisfies the differential equation

\[
aw''(t) + bw' + cw(t) = 0, \tag{1}
\]

where \(a \) and \(c \) are positive constants and \(b \geq 0 \). Let \(E(t) = \frac{1}{2}[aw'^2 + cw^2] \).

a) Without solving the differential equation, show that \(E'(t) \leq 0 \).

b) Use this to show that \(w(0) = 0 \) and \(w'(0) = 0 \), then \(w(t) = 0 \) for all \(t \geq 0 \).

c) [Uniqueness] Say the functions \(u(t) \) and \(v(t) \) both satisfy the same equation \(\text{(1)} \) and also \(u(0) = v(0) \) and \(u'(0) = v'(0) \). Show that \(u(t) = v(t) \) for all \(t \geq 0 \).

8. Say \(u(x, t) \) has the property that \(\frac{\partial u}{\partial t} = 2 \) for all points \((x, t) \in \mathbb{R}^2 \).

a) Find some function \(u(x, t) \) with this property.

b) Find the most general such function \(u(x, t) \).

c) If \(u(x, 0) = \sin 3x \), find \(u(x, t) \).

d) If instead \(u \) satisfies \(\frac{\partial u}{\partial t} = 2xt \), still with \(u(x, 0) = \sin 3x \), find \(u(x, t) \).

9. Say \(u(x, t) \) has the property that \(\frac{\partial u}{\partial t} = 3u \) for all points \((x, t) \in \mathbb{R}^2 \).

a) Find some such function – other than the trivial \(u(x, t) \equiv 0 \).

b) Find the most general such function.

c) If \(u(x, t) \) also satisfies the initial condition \(u(x, 0) = \sin 3x \), find \(u(x, t) \).

10. a) If \(u(x, t) = \cos(x - 3t) + 2(x - 3t)^7 \), show that \(3u_x + u_t = 0 \).

b) If \(f(s) \) is any smooth function of \(s \) and \(u(x, t) = f(x - 3t) \), show that \(3u_x + u_t = 0 \).

11. A function \(u(x, y) \) satisfies \(3u_x + u_t = f(x, t) \), where \(f \) is some specified function.

a) Find an invertible linear change of variables

\[
\begin{align*}
 r &= ax + bt \\
 s &= cx + dt,
\end{align*}
\]
where a, b, c, d are constants, so that in the new (r, s) variables u satisfies $\frac{\partial u}{\partial s} = g(r, s)$, where g is related to f by the change of variables. [Remark: There are many possible such changes of variable. The point is to reduce the differential operator $3u_x + u_t$ to the much simpler u_s.]

b) Use this procedure to solve

$$3u_x + u_t = 1 + x + 2t \quad \text{with} \quad u(x, 0) = e^x.$$

12. Let S and T be linear spaces, such as \mathbb{R}^3 and \mathbb{R}^7 and $L : S \to T$ be a linear map; thus, for any vectors X, Y in S and any scalar c

$$L(X + Y) = LX + LY \quad \text{and} \quad L(cX) = cL(x).$$

Say V_1 and V_2 are (distinct!) solutions of the equation $LX = Y_1$ while W is a solution of $LX = Y_2$. Answer the following in terms of V_1, V_2, and W.

a) Find some solution of $LX = 2Y_1 - 7Y_2$.

b) Find another solution (other than W) of $LX = Y_2$.

13. The following is a table of inner (“dot”) products of vectors u, v, and w.

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>v</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>4</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>v</td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>w</td>
<td>8</td>
<td>3</td>
<td>50</td>
</tr>
</tbody>
</table>

For example, $v \cdot w = w \cdot v = 3$.

a) Find a unit vector in the same direction as u.

b) Compute $u \cdot (v + w)$.

c) Compute $\|v + w\|$.

d) Find the orthogonal projection of w into the plane E spanned by u and v. [Express your solution as linear combinations of u and v.]

e) Find a unit vector orthogonal to the plane E.

f) Find an orthonormal basis of the three dimensional space spanned by u, v, and w.

14. Let z and w be complex numbers.

a) Write the complex number $z = \frac{1}{3 + 4i}$ in the form $z = a + ib$ where a and b are real numbers.
b) Show that \((zw) = \bar{z}\bar{w} \).

c) Show that \(|z|^2 = z\bar{z} \).

d) show that \(|zw| = |z||w| \).

15. If \(z = x + iy \) is a complex number, one way to define \(e^z \) is by the power series

\[
e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots + \frac{z^n}{n!} + \cdots = \sum_{n=0}^{\infty} \frac{z^n}{n!}.
\]

(2)
a) Using the usual (real) power series for \(\cos y \) and \(\sin y \), show that

\[
e^{iy} = \cos y + i \sin y.
\]

b) Use this to show that \(\cos y = \frac{e^{iy} + e^{-iy}}{2} \) and \(\sin y = \frac{e^{iy} - e^{-iy}}{2i} \).

c) Using equation (2), one can show that \(e^{z+w} = e^z e^w \) for any complex numbers \(z \) and \(w \) (accept this for now). Consequently

\[
e^{i(x+y)} = e^{ix} e^{iy}.
\]

Use the result of part (a) to show that this implies the usual formulas for \(\cos(x+y) \) and \(\sin(x+y) \).

16. Let \(\mathcal{D} \subset \mathbb{R}^2 \) be a bounded (connected) region with smooth boundary \(\mathcal{B} \). If \(u(x,y) \) is a “smooth” function, write \(\Delta u = u_{xx} + u_{yy} \) (we call \(\Delta \) the Laplace operator). Some people write \(\Delta u = \nabla^2 u \).

Suggestion: First do this problem for a function of one variable, \(u(x) \), so \(\Delta u = u'' \) and, say, \(\mathcal{D} \) is the interval \(\{0 < x < 1\} \).

a) Show that \(u\Delta u = \nabla \cdot (u\nabla u) - |\nabla u|^2 \).

b) If \(u(x, y) = 0 \) on \(\mathcal{B} \). Show that

\[
\iint_{\mathcal{D}} u\Delta u \, dx \, dy = -\iint_{\mathcal{D}} |\nabla u|^2 \, dx \, dy.
\]

c) If \(\Delta u = 0 \) in \(\mathcal{D} \) and \(u = 0 \) on the boundary \(\mathcal{B} \), show that \(u(x,y) = 0 \) throughout \(\mathcal{D} \).

17. The temperature \(u(x,t) \) of a certain thin rod, \(0 \leq x \leq L \) satisfies the heat equation

\[
u_t = u_{xx}
\]
Assume the initial temperature $u(x, 0) = 0$ and that both ends of the rod are kept at a temperature of 0, so $u(0, t) = u(L, t) = 0$ for all $t \geq 0$. What do you anticipate the temperature in the rod will be at any later time t?

I hope you suspect that $u(x, t) = 0$ for all $t \geq 0$. Use the following to prove this. Let

$$H(t) = \int_0^L u^2(x, t) \, dx.$$

a) Show that since the temperature on the ends of the rod is always zero, then $dH/dt \leq 0$ (an integration by parts will be needed). Thus, for any $t \geq 0$ we know that $H(t) \leq H(0)$

b) Since the initial temperature is zero, what is $H(0)$? Why does this imply that $H(t) = 0$ for all $t \geq 0$? Why does this imply that $u(x, t) = 0$ for all points on the rod and all $t \geq 0$?

Bonus Problem

[Please give this directly to Professor Kazdan]

B-1 [Generalization of Problem 17 to more space dimensions]. Say a function $u(x, y, t)$ satisfies the heat equation in a bounded region $\Omega \in \mathbb{R}^2$

$$u_t = u_{xx} + u_{yy}$$

and that $u(x, y, t) = 0$ for all points (x, y) on the boundary, \mathcal{B} of Ω and all $t \geq 0$. Similar to Problem 17, define

$$H(t) = \iint_{\Omega} u^2(x, y, t) \, dx \, dy.$$

a) Use $u(x, y, t) = 0$ for all points (x, y) on the boundary \mathcal{B} and all $t \geq 0$ to show that $dH/dt \leq 0$ for all $t \geq 0$. [Suggestion: See Problem 16.]

b) If in addition use that the initial temperature is zero, $u(x, y, 0) = 0$ for all points $(x, y) \in \Omega$, to show that $u(x, y, t) = 0$ for all $(x, y) \in \Omega$ and all $t \geq 0$.

[Last revised: January 23, 2015]