Problem Set 4

Due: Thurs. Feb. 12 in class. [Late papers will be accepted until 1:00 PM Friday.]

This week. Please read all of Chapter 4 Sec. 4 and Chapter 3 Sec. 3.1 - 3.3 in the Haberman text.

Note: Exam 1 Tues, Feb. 17, 10:30-11:50. Closed book, no calculators, no cell phones, but you may use one 3 × 5 card with notes on both sides.

Remark: One goal of the Bonus Problem 1 below is to show that if \(\phi(t) \) satisfies

\[
\phi'' + \gamma \phi = 0,
\]

where \(\gamma \) is a const and if \(\phi \) satisfies the periodic boundary conditions

\[
\phi(P) = \phi(0) \quad \text{and} \quad \phi'(P) = \phi'(0),
\]

then \(\phi(t) \) is periodic with period \(P \), that is, \(\phi(t + P) = \phi(t) \) for all \(t \). This justifies why (1) are called “periodic boundary conditions.”

1. p. 83 #2.5.10
2. p. 84 #2.5.13
3. p. 84 #2.5.14
4. Solve the Laplace equation in the annular region \(1 < r < 2 \) in the plane with boundary conditions (polar coordinates) \(u(1, \theta) = 3 \) and \(u(2, \theta) = 5 \).
5. [Solid Mean Value Property] Let \(u \) satisfy the Laplace equation \(\Delta u = 0 \) in a region \(\Omega \) in the plane \(\mathbb{R}^2 \). The book (p. 79) shows that the for any disk \(D \), the value at the origin is the average of its values on the bounding circle \(C \) of that disk.

Multiplying this formula by \(r \) and then integrating, obtain the “Solid Mean Value Property” for a disk \(D(a) \) of radius \(a \)

\[
u(0, \theta) = \frac{1}{\pi a^2} \int_0^a \left(\int_0^{2\pi} u(r, \theta) \, d\theta \right) r \, dr = \frac{1}{\pi a^2} \int_D u(r, \theta) \, dA,
\]

where \(dA = r \, dr \, d\theta \) is the element of area in polar coordinates.

6. p. 143 # 4.4.6
7. Use separation of variables to solve the wave equation \(u_{tt} = u_{xx} \) (so we are taking \(c = 1 \) for a vibrating string \(0 < x < \pi \) with initial conditions

\[
 u(x, 0) = 3 \sin 7x + 2 \sin 19x, \quad u_t(x, 0) = 8 \sin 5x,
\]

and boundary conditions (fixed end points) \(u(0, t) = 0, \ u(\pi, t) = 0 \).

8. a) Let \(u(x, t) \) be a solution of the wave equation \(u_{tt} = u_{xx} \) for a vibrating string \(0 < x < L \) whose end points are fixed: \(u(0, t) = 0, \ u(L, t) = 0 \) and define the “Energy”, \(E(t) \), by

\[
 E(t) = \frac{1}{2} \int_0^L (u_t^2 + u_x^2) \, dx.
\]

Show that energy is conserved, \(dE/dt = 0 \). [Suggestion: Integrate by parts. Since \(u = 0 \) on the boundary, then also \(u_t = 0 \) there.]

b) If \(u(x, 0) = 0 \) and \(u_t(x, 0) = 0 \), what can you conclude?

c) Generalize this to the motion \(u(x, y, t) \) of a vibrating membrane, \(\Omega \subset \mathbb{R}^2 \) so \(u_{tt} = \Delta u \) in \(\Omega \) whose boundary, \(\partial \Omega \), is fixed: \(u(x, y, t) = 0 \) for all \((x, y) \) on \(\partial \Omega \) and all \(t \geq 0 \). Here

\[
 E(t) = \frac{1}{2} \int_D (u_t^2 + |\nabla u|^2) \, dx \, dy.
\]

Show that energy is conserved.

Bonus Problem

[Please give this directly to Professor Kazdan]

B-1 Say a function \(u(t) \) satisfies the differential equation

\[
 u'' + b(t)u' + c(t)u = 0
\]

on the interval \([0, A] \) and that the coefficients \(b(t) \) and \(c(t) \) are both bounded, say \(|b(t)| \leq M \) and \(|c(t)| \leq M \) (if the coefficients are continuous, this is always true for some \(M \)).

a) Define \(E(t) := \frac{1}{2}(u'^2 + u^2) \). Show that for some constant \(\gamma \) (depending on \(M \)) we have \(E'(t) \leq \gamma E(t) \). [Suggestion: use the simple inequality \(2xy \leq x^2 + y^2 \).]

b) Show that \(E(t) \leq e^{\gamma t} E(0) \) for all \(t \in [0, A] \). [Hint: First use the previous part to show that \((e^{-\gamma t} E(t))' \leq 0 \).

c) In particular, if \(u(0) = 0 \) and \(u'(0) = 0 \), show that \(E(t) = 0 \) and hence \(u(t) = 0 \) for all \(t \in [0, A] \). In other words, if \(u'' + b(t)u' + c(t)u = 0 \) on the interval \([0, A] \) and that the functions \(b(t) \) and \(c(t) \) are both bounded, and if \(u(0) = 0 \) and \(u'(0) = 0 \), then the only possibility is that \(u(t) \equiv 0 \) for all \(t \geq 0 \).
d) Use this to prove the uniqueness theorem: if \(v(t) \) and \(w(t) \) both satisfy equation

\[
u'' + b(t)u' + c(t)u = f(t)
\] \hspace{1cm} (3)

and have the same initial conditions, \(v(0) = w(0) \) and \(v'(0) = w'(0) \), then \(v(t) \equiv w(t) \) in the interval \([0, A]\).

e) Assume the coefficients \(b(t) \), \(c(t) \), and \(f(t) \) in equation (3) are periodic with period \(P \), that is, \(b(t + P) = b(t) \) etc. for all real \(t \). If \(\phi(t) \) is a solution of equation (3) that satisfies the periodic boundary conditions \((1) \), show that \(\phi(t) \) is periodic with period \(P \).

[Last revised: June 28, 2015]