Math 260
Final Exam
Jerry L. Kazdan
May 2, 2012
9:00 – 11:00

Directions
This exam has two parts. **Part A** has 5 short answer questions (5 points each, so 25 points) while **Part B** has 8 traditional problems (10 points each, so 80 points). Total: 105 points. *Neatness counts.*

Closed book, no calculators, computers, ipods, cell phones, etc – but you may use one 3" x 5" card with notes on both sides.

Part A: Five short answer questions (5 points each, so 25 points).

A-1. Let S be the linear space of 2×2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a + d = 0$. Compute the dimension of S.

A-2. Let V and W be linear spaces and $L : V \to W$ a linear map. Let w_1 and w_2 be in W. Say $v_1 \in V$ is a solution of $L v_1 = w_1$ while both v_2 and v_3 are distinct points in V that satisfy $L v_2 = L v_3 = w_2$. Does the equation $L x = w_1$ have a solution other than v_1? Explain your reasoning.

A-3. Let $f(t)$ be a smooth function of the real variable t. Show that for any real constants a and b, the function $u(x, y) := f(ax + by)$ satisfies $u_{xx} u_{yy} - u_{xy}^2 = 0$.

A-4. Consider the surface defined implicitly by $x^2 + 9y^2 - z^2 = 10$. Find a vector orthogonal to the tangent plane at $(1, 1, 0)$.

A-5. Let $J := \int_0^2 \left(\int_0^x f(x, y) dy \right) dx$. Rewrite this as an iterated integral with the order of integration reversed, so one first integrates with respect to x.

Part B: Eight traditional problems (10 points each, so 80 points).

B-1. Consider the set of real-valued continuous functions on the interval $-1 \leq x \leq 1$ with the inner product $\langle f, g \rangle := \int_{-1}^1 f(x)g(x) dx$.

a) Find a quadratic polynomial $p(x) := a + bx + cx^2$ (with $a \neq 0$) that is orthogonal to both $e_1(x) := 1$ and $e_2(x) := x$.

b) Find the orthogonal projection of $q(x) := x^4$ into the subspace spanned by $e_1(x)$, $e_2(x)$, and $p(x)$.

B-2. Find a solution of $u'' + 4u = x^2$ that satisfies the initial conditions $u(0) = 0$ and $u'(0) = 0$.

1
B-3. Let \(A \) be a real \(n \times n \) antisymmetric matrix.

a) Show that \(\langle X, AX \rangle = 0 \) for all vectors \(X \in \mathbb{R}^n \).

b) Say \(X(t) \) is a solution of the differential equation \(\frac{dX}{dt} = AX \). Show that \(\|X(t)\| = \) constant. [Remark: In the special case \(A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) this implies \(\sin^2 t + \cos^2 t = 1 \).]

B-4. Find and classify the critical points of \(g(x,y) := x^2 - 2xy + \frac{1}{3}y^3 - 3y \).

B-5. Compute \(\oint_{\gamma} 2x \, dy - y \, dx \) where the closed curve \(\gamma \) is the triangle in \(\mathbb{R}^2 \) with vertices at \((0,0) \), \((1,0) \), and \((1,2) \), traversed counterclockwise.

B-6. Let \(V = (y^2 + x)\mathbf{i} + (2xy - 3)\mathbf{j} \).

a) Find a function \(u(x,y) \) so that \(V = \nabla u \).

b) Let \(\gamma \) be the triangle bounded by the \(x \)-axis, the \(y \)-axis, and the straight line \(2x + y = 2 \), traversed counterclockwise. Compute \(\oint_{\gamma} V \cdot ds \).

B-7. Consider the region \(\Omega \subset \mathbb{R}^3 \) above the surface \(z = x^2 + y^2 \) and below the plane \(z = 4 \).

Compute \(\iiint_{\Omega} 2z \, dV \).

B-8. Let \(\Omega \subset \mathbb{R}^2 \) be a bounded open set with smooth boundary \(\partial \Omega \) and let \(w(x,y,t) \) be the solution of the heat equation

\[
 w_t = \Delta w \quad \text{for all } (x,y) \in \Omega \quad \text{and } t \geq 0, \quad \text{with } w = 0 \quad \text{for } (x,y) \text{ on } \partial \Omega.
\]

a) Define \(E(t) := \frac{1}{2} \iiint_{\Omega} w^2(x,y,t) \, dx \, dy \). Show that \(dE/dt \leq 0 \).

b) If in addition the initial temperature \(w(x,y,0) = 0 \), show that \(w(x,y,t) = 0 \) for all \((x,y) \in \Omega \) and \(t \geq 0 \).

c) If \(u(x,y,t) \) and \(v(x,y,t) \) both satisfy the heat equation in \(\Omega \) with \(u(x,y,t) = v(x,y,t) \) on \(\partial \Omega \) for all \(t \geq 0 \) and also \(u(x,y,0) = v(x,y,0) \), show that \(u(x,y,t) = v(x,y,t) \) for all \((x,y) \in \Omega \) and \(t \geq 0 \).