This example is similar to Problem Set 7 # 3a).

Example: Find a function \(u(x, y) \) that satisfies \(u_x + 3u_y = 0 \) with \(u(0, y) = 1 + e^{2y} \).

Solution: The differential equation can be written \(\nabla u \cdot V = 0 \) where \(V = (1, 3) \). It means that at every point the directional derivative in the direction of \(V \) is 0 so \(u(x, y) \) is constant along these parallel straight lines, which have the form \(y = 3x + C \). Given a point \((x, y)\) one computes \(y - 3x \) to determine \(C \), that is, which line you are on.

Thus the solution \(u(x, y) = h(y - 3x) \) for some as yet unknown function \(h(s) \). Now we use the initial condition \(u(0, y) = 1 + e^{2y} \). It gives us

\[
1 + e^{2y} = u(0, y) = h(y).
\]

Consequently \(u(x, y) = 1 + e^{2(y-3x)} \).

[Last revised: February 28, 2012]