Intuition and Functions of Several Variables

Undergraduates are usually surprised to see the classical example in the plane \mathbb{R}^2,

$$f(x, y) = (y - x^2)(y - 2x^2),$$

that has a local minimum approaching the origin along straight lines, but the origin is actually a saddle point. The complicating ingredient is that in this example, the origin is a degenerate critical point (the second derivative matrix is not invertible). Approaching a non-degenerate critical point along straight lines does determine the nature of the critical point.

Long ago, in a distant galaxy I was asked to referee a proof of the positive mass conjecture in general relativity. The conjecture, eventually proved correct, was then an open question. The author’s argument essentially was the following. He had a functional of the form

$$J(u) = \iiint_{\mathbb{R}^3} F(u, \nabla u) \, dx \, dy \, dz$$

where $F(u, p)$ was a smooth real-valued function of its variables and $u(x, y, z)$ lies in some reasonable function space. Since in his example $F(0, 0) = 0$, it was clear that $J(0) = 0$. The goal was to prove that $J(u) \geq 0$ for all u. The author showed that $u(x, y, z) \equiv 0$ was the only critical point of $J(u)$, and also that it was a non-generate local minimum. Using intuition that was “obvious” to him, he then concluded that $u(x) \equiv 0$ was the global minimum of J, thus proving the desired inequality.

The point of this note is to give an example showing this intuition is false, even for fairly simple functions $f(x, y)$ of two variables [it is true for functions of one variable]. I will also give a few related examples.

Example 1. To show how to arrive at the example in a few steps revealing the geometric idea, begin with

$$h(s, t) := s^3 - 3s + t^2,$$

which has two (non-degenerate) critical points, a saddle at $(-1, 0)$ and a local min at $(1, 0)$.

Make a change of variables to put the min in the upper half-plane and the saddle in the lower half-plane. A rotation by $\pi/4$ will do but the resulting formula is simpler using: $s = u$, $t = u - v$. In these new variables the example is

$$g(u, v) := u^3 - 3u + (u - v)^2$$

whose critical points are now at $(-1, -1)$ and $(1, 1)$.

Finally, get rid of the saddle at $(-1, -1)$ by using a diffeomorphism of the whole plane onto the upper half-plane: $x = u$, $y = e^v$. The example is then

$$f(x, y) := x^3 - 3x + (x - e^v)^2.$$
It has a non-degenerate local min at \((1,0)\) and no other critical points. This not the global minimum since as \(x \to -\infty\) then \(f(x,y) \to -\infty\).

EXAMPLE 2. Several years ago I mentioned this question to my advanced calculus course and asked if they could find a polynomial example. The next week one student, James Pender, found the surprisingly simple polynomial

\[
p(x,y) := (1+y)^3 x^2 + y^2.
\]

It has only one critical point (at the origin) where there is a non-degenerate local minimum. However this is not the global minimum.

A picture would really help. I used Maple to graph this and related examples, such as \(g(x,y) := (1-y^2)^3 x^2 + y^2\). None of my pictures satisfied me. Surely others can do better. These examples are not very complicated. They show that the phenomenon is not pathological.

Moral: Geometric intuition for functions of several variables can be difficult.

Exercise Find a smooth function \(f : \mathbb{R}^2 \to \mathbb{R}\) that has exactly two local minima (non-degenerate) but no other critical points.

Generalization. The geometric ideas used in Example 1 can be used to show the well-known fact that given and non-negative integers \(M, s, m\) there is a smooth function \(f : \mathbb{R}^2 \to \mathbb{R}\) having exactly \(M\) local maxima, \(s\) saddle points, and \(m\) local minima, all non-degenerate, and no other critical points. Thus there can’t be any Morse inequalities.

To construct an example, take a function \(g\) with infinitely many non-degenerate maxima, saddles, and minima, for instance \(g(x,y) := \sin \pi x \sin \pi y\). Pick the required number of maxima, saddles, and minima, Let \(\Gamma\) be a smooth curve with no self-intersections that passes through these critical points and no others. Then let \(\Omega\) be a tubular neighborhood of \(\Gamma\) that contains no additional critical points. There is a diffeomorphism \(\varphi : \mathbb{R}^2 \to \Omega\). The desired example is \(f := g \circ \varphi\).

This note was written backwards. I knew the construction just above first and when I needed it to referee the paper mentioned in the introduction, simply adapted the general argument to obtain Example 1.