DIRECTIONS This exam has two parts. Part A has shorter 5 questions, (10 points each so total 50 points) while Part B had 5 problems (15 points each, so total is 75 points). Maximum score is thus 125 points.
Closed book, no calculators or computers– but you may use one 3" × 5" card with notes on both sides. Clarity and neatness count.

PART A: Five short answer questions (10 points each, so 50 points).

A−1. Which of the following sets are linear spaces? [If not, why not?]
 a) The points $\vec{x} = (x_1, x_2, x_3)$ in \mathbb{R}^3 with the property $x_1 - 2x_3 = 0$.
 b) The set of points $(x, y) \in \mathbb{R}^2$ with $y = x^2$.
 c) In \mathbb{R}^2, the span of the linearly dependent vectors $\begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$.
 d) The set of solutions \vec{x} of $A\vec{x} = 0$, where A is a 4×3 matrix.
 e) The set of polynomials $p(x)$ of degree at most 2 with $p(1) = 0$.

A−2. Let S be the linear space of 2×2 matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a + d = 0$. Find a basis and compute the dimension of S.

A−3. Let S and T be linear spaces and $L : S \rightarrow T$ be a linear map. Say \vec{v}_1 and \vec{v}_2 are (distinct!) solutions of the equations $L\vec{x} = \vec{y}_1$ while \vec{w} is a solution of $L\vec{x} = \vec{y}_2$. Answer the following in terms of \vec{v}_1, \vec{v}_2, and \vec{w}.
 a) Find some solution of $L\vec{x} = 2\vec{y}_1 - 2\vec{y}_2$.
 b) Find another solution (other than \vec{w}) of $L\vec{x} = \vec{y}_2$.

A−4. Say you have a matrix A.
 a) If $A : \mathbb{R}^5 \rightarrow \mathbb{R}^5$, what are the possible dimensions of the kernel of A? The image of A?
 b) If $B : \mathbb{R}^5 \rightarrow \mathbb{R}^3$, what are the possible dimensions of the kernel of B? The image of B?

A−5. Let A be any 5×3 matrix so $A\vec{x} : \mathbb{R}^3 \rightarrow \mathbb{R}^5$ is a linear transformation. Answer the following with a brief explanation.
 a) Is $A\vec{x} = \vec{b}$ necessarily solvable for any \vec{b} in \mathbb{R}^5?
 b) Suppose the kernel of A is one dimensional. What is the dimension of the image of A?

PART B Five questions, 15 points each (so 75 points total).

B−1. Let $Q = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}$. [NOTE: In this problem, there is no partial credit for sloppy computations.]
a) Find the inverse of Q.
b) Find the inverse of Q^2.

B-2. Define the linear maps A, B, and C from $\mathbb{R}^2 \to \mathbb{R}^2$ by the rules

- A rotates vectors by $\pi/2$ radians counterclockwise.
- B reflects vectors across the horizontal axis.
- C orthogonal projection onto the vertical axis, so $(x_1, x_2) \to (0, x_2)$

Let M be the linear map that first applies A, then B, and finally C. Find a matrix that represents M in the standard basis for \mathbb{R}^2.

B-3. Let $A : \mathbb{R}^3 \to \mathbb{R}^2$ and $B : \mathbb{R}^2 \to \mathbb{R}^3$ be given matrices.
a) Show that $BA : \mathbb{R}^3 \to \mathbb{R}^3$ cannot be invertible.
b) Give an example where the matrix $AB : \mathbb{R}^2 \to \mathbb{R}^2$ is invertible.

B-4. a) Find all matrices $A : \mathbb{R}^3 \to \mathbb{R}^2$ whose kernels contain the vector $\vec{x} := \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$.
b) Find a basis for the linear space of these matrices.

B-5. Let $L : \mathcal{P}_2 \to \mathcal{P}_2$ be the linear map that send a polynomial $p(x)$ (of degree at most 2) to $p''(x) + 3p(x)$.
a) Find the matrix representation $[L]_B$ of L using the basis $B = \{1, x, x^2\}$.
b) Find a basis for the kernel of L (you may use your matrix $[L]_B$).
c) Find a basis for the image of L (you may use your matrix $[L]_B$).
d) Is L invertible? Why or why not?