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Find the standard matrices for these matrix transfor- (a) The image of the unit square under a one-to-one matrix gpe,.

mations. ator is a square.
Az z (b) A2 x 2 invertible matrix operator has the geotnetric effect o
a succession of shears, compressions, expansions, and reflec.
tions.

s Vy ,7z)°_.“': - g (x * sz ¥ .J“ekz' ) (c) The image of a line under a one-to-one matrix operator js ,

line.

el R (d) Every reflection operator on R? is its own inverse.
x / x / 1 1 .
(e) The matrix ] represents reflection about a line,
A Figure Ex-23 11 -1
(f) The matrix B :| represents a sheat.
True-False Exercises 2 1
In parts (a)—(g) determine whether the staterent is true or false, .1 0O ..
and justify your answer. (g) The matrix 3 represents an expansion. -

412 Dynarmical Systems and Markov Chains

In this optional section we will show how matrix methods can be used to analyze the
behavior of physical systems that evolve over time. The methods that we will study here
have been applied to problems in business, ecology, demegraphics, sociology, and mast of
the physical sciences. -'

Dynamical Systems * A dynamical system is a finite set of variables whose values change with time. The value
of a variable at a point in time is called the state of the variable at that time, and the
vector formed from these states is called the state of the dynamical system at that time.
Our primary objective in this section is to analyze how the state of a dynamical system
changes with time. Let us begin with an example.

B EXAMPLE 1 Market Share as a Dynamical Systém

Suppose that two competing television channels, channel 1 and channel 2, each have
50% of the viewer market at some initial point in time. Assume that over each one-year
period channel 1 captures 10% of channel 2% share, and channel 2 captures 20% of
channel 1% share (see Figure 4.12.1). What is each channel’s market share after one

year?
Ch I 10% Ch I :
a{‘”e a;”e Solution Let us begin by introducing the time-dependent variables
b 20% J x1(t) = fraction of the market held by channel 1 at time #
%5(7) = fraction of the market held by channel 2 at time ¢
80% 90%
Channel 1 loses 20% and and the col vector
hoids 80%. x1(5) <— Channel 1’s fraction of the market at time ¢ in years
Channel 2 loses 10% and x(t) =
holds 90%. X2 () <— Channel 2’ fraction of the market at time ¢ in years
4 Figure 4.12.1 The variables x; () and x,(¢) form a dynamical system whose state at time 7 is the vector

x(#). If we take 7 = 0 to be the starting point at which the two channels had 50% of the
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market, then the state of the system at that time is
x1(0) 0.5 <~ Chaannel 1’ fraction of the market at time 7 = 0
x(0) = = (D)
x2{0) 0.5

Now let us try to find the state of the system at time ¢ = 1 (one year laier). Over the
one-year period, channel 1 retains 80% of its initial 50%, and it gains 10% of channel
2% initial 50%. Thus,

<~ Channel 2’s fraction of the market at time t =0

x1(1) = 0.8(0.5) -+ 0.1(0.5) = 0.45 )

Similarly, channel 2 gains 20% of channel 1’s initial 50%, and retains 90% of ifs initial
50%. Thus,

%2(1) = 0.2(0.5) + 0.90.5) = 0.55 - 3)
Therefore, the state of the system at time £ = 1 is
x1(1) 0.45 <~ Channel 1’s fraction of the market at time ¢ = 1
b= = 4
x() [x;(l)] [o.ss} @

<— Chanxnel 2’s fraction of the market at time ¢ = 1

P EMAMPLE 2 Evolution of Market Share over Five Years
Track the market shares of channels 1 and 2 in Example 1 over a five-year period.

Solution To solve this problem suppose that we have already computed the market
share of each channel at time ¢ == k and we are inferested in using the known values of
x1(k) and x, (k) to compute the market shares x;(k + 1) and x,(k 4 1) one year later.
The analysis is exactly the same as that used to obtain Equations (2) and (3). Over the
one-year period, channel 1 retains 80% of its starting fraction x, (k} and gains 10% of
channel 2% starting fraction x; (k). Thus,

x1(k +1) = (0.8)x1 (k) + (0.1)x2(k) (%)

Similarly, channel 2 gains 20% of channel 1’s starting fraction x; (k) and retains 50% of
its own starting fraction x; (k). Thus,

xp(k -+ 1) = (02)x1 (k) + (0.9)x2(k) (6)
Equations (5) and {6) can be expressed in matrix form as
[xl(kJr 1)} _ [0.8. 0.1} [xl(k)] : )
x(k+1) 0.2 09]|xk)

which provides a way of using matrix multiplication to compute the state of the system
at time ¢ = k 4 1 from the state at time ¢ = k. For example, using (1) and (7) we obtain

dy Z[08 01] o _[08 0] [05]_[04s
D =102 09/ =102 09]l05] = |oss
which agrees with (4). Similarly,
0.8 0.1 0.8 0.17[0.45] [0.415

x@ = [0_2 0.9} x() = {0.2 0.9} [0.55_ = _0.585]

We can now continue this process, using Formula (7) to compute x(3) from x(2), then
x(4) from x(3), and so on. This yields (verify)

x(3) = {0.3905} x() = [0.37335] x5 = [0.361345] ®)

0.6095 0.62665 0.638655

Thus, after five years, channel 1 will hold about 36% of the market and channel 2 will
hold about 64% of the market.
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Markov Chains

If desired, we can continue the market analysis in the last example beyond the fiy,.
year period and explore what happens to the market share over the long term. We gig
50, using a computer, and obtained the following state vectors (rounded to six decimy
places):

0.338041 0.333466 0.333333
X(10)"“[0.661959}’ X(ZO)N[O.666534]’ x(40)'“’[0.666667] ©)

All subsequent state vectors, when rounded to six decimal places, are the same as x(40),
s0 we see that the market shares eventually stabilize with channel 1 holding about one.
third of the market and channel 2 holding about two-thirds. Later in this section, we wi]}
explain why this stabilization occurs.

Tn many dynamical systems the states of the variables are not known with certainty but can
be expressed as probabilities; such dynamical systems are called stochastic processes
(from the Greek word stokastikos, meaning “proceeding by guesswork ). A detaileq
study of stochastic processes requires a precise definition of the term probability, which
is outside the scope of this course. However, the following interpyetation will suffice for
our present purposes: 7

Stated informally, the probability that an experiment or observation will have a certain
outcome is approximately the fraction of the time that the outcome would occur if the
experiment were to be repeated many times under constant conditions—the greater
the number of repetitions, the move accurately the probability describes the fraction
of occurrences. : '

For example, when we say that the probability of tossing heads with a fair coin is %
we mean that if the coin were tossed many times under constant conditions, then we
would expect about half of the outcomes to be heads. Probabilities are often expressed
as decimals or percentages. Thus, the probability of tossing heads with a fair coin can
also be expressed as 0.5 or 50%.

If an experiment or obscrvation has n possible outcomes, then the probabilities of
those outcomes must be nonnegative fractions whose sum is 1. The probabilities are
nomnegative because each describes the fraction of occurrences of an outcome over the
long term, and the sum is I because they account for all possible outcomes. For example,
if a box containing 10 balls has one red ball, three green balls, and six yellow balls, and
if a ball is drawn at random from the box, then the probabilities of the various outcomes
e p1 == prob(red) = 1/10 == 0.1

po, = prob(green) = 3/10 = 0.3
p3 = prob(yellow) = 6/10 = 0.6
Each probability is a normegative fraction and
1+t ps =014+03406=1

~In a stochastic process with n possible states, the state vector at each time ¢ has the

form
%1 (1) Probability that the system is in state 1

x2(8) Probability that the system is in state 2
x{1) = . .
x,(8) Probability that the system is in state n

The entries in this vector must add up to 1 since they account for all n possibilities. In
general, a vector with nonnegative entries that add up to 1 is called a prebability vector
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B EXAMPLE 2 Example 1 Revisited from the Probability Viewpoint

Observe that the state vectors in Examples 1 and 2 are all probability vectors. This is to
be expected since the entries in each state vector are the fractional market shares of the
channels, and together they account for the entire market. In practice, it is preferable to
interpret the entries in the state vectors as probabilities rather than exact market fractions,
since market information is usually obtained by statistical sampling procedures with
intrinsic uncertainties. Thus, for example, the state vector

I 0.45
X =™ Y _
x2(1) 0.55
which we interpreted in Example 1 to mean that channel 1 has 45% of the market and
channel 2 has 55%, can also be interpreted to mean that an individual picked at random

from the market will be a channel 1 viewer with probability 0.45 and a channel 2 viewer
with probability 0.55. 4 s

A square matrix, each of whose columns is a probability vector, is called a stechastic
matrix. Such matrices commonly occur in formulas that relate successive states of a
stochastic process. For example, the state vectors x(k + 1) and x(k) in (7) are related by
an equation of the form x(k + 1) = Px(k) in which

0.8 0.1
= 10
P [0.2 0.9] (10)
is a stochastic matrix. It should not be surprising that the column vectors of P are
probability vectors, since the entries in each columm provide a breakdown of what happens
to each channel’s market share over the year—the entries in column 1 convey that each
year channel 1 retains 80% of its market share and loses 20%; and the entries in column

2 convey that each year channel 2 retains 90% of its market share and loses 10%. The
entries in (10) can also be viewed as probabilities:

pu = 0.8 = probability that a channel 1 viewer remains a channel 1 viewer
p2: = 0.2 = probability that a channel | viewer becomes a channel 2 viewer
p1z = 0.1 = probability that a channel] 2 viewer becomes a channel 1 viewer
P22 = 0.9 = probability that a channel 2 viewer remains a channel 2 viewer

Example 1 is a special case of a iarge class of stochastic processes, called Markov
chains.

Historical Note Markov chains are named in honor
of the Russian mathematician A. A. Markov, a lover of
poetry, who used them to analyze the alternation of
vowels and consonants in the poem Eugene Onegin
by Pushkin. Markov believed that the only applications
of his chains were to the analysis of literary works, so
he would be astonished to learn that his discovery is
used today in the social sciences, quantum theory, and

genetics!
[image: wikipedia)

Andrei Andreyevich
Markov
(1856-1922)
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, DEFINITION 1 A Markov chain is a dynamical system whose state vm
State at time t = & a

; succession of time intervals are probability vectors and for which the state vectors 4
‘ ' successive time intervals are related by an equation of the form
State at time _
— P ki x(k + 1) = Px(k)

\ in which P = [p;;] is a stochastic matrix and p;; is the probability that the syster,
will be in state i at time ¢ = k -+ | if it is in state j at time ¢ = k. The matrix p

The entry p;; is the probability called the fransition matrix for the system.
that the system is in state { at J

timer=k+ 1ifitis in state j
attime r=k.

Remark Note that in this definition the row index i corresponds to the later state and the columy,
4 Figure 4.12.2 index j to the earlier state (Figure 4.12.2).

b EXAWMPLE 4 Wildlife Migration as a Markov Chain

Suppose that a tagged lion can migrate over three adjacent game reserves in search
of food, reserve 1, reserve 2, and reserve 3. Based on data about the food resources,
researchers conclude that the monthly migration pattern of the lion can be modeled by
a Markov chain with transition matrix o

Reserve at time f =k

1 2 3
05 04 0671
P=(02 02 03]|2 Reserveattime?=4xk-+1
03 04 0.1]3
(see Figure 4.12.3). Fhat is,
0.5 p1i = 0.5 = probability that the lion will stay in reserve 1 when it is in reserve 1

m P12 = 0.4 = probability that the lion will move from reserve 2 to reserve 1
Reserve p13 = 0.6 = probability that the lion will move from reserve 3 to reserve 1
i pai = 0.2 = probability that the lion will move from reserve L to reserve 2

‘//‘ '\\4 P22 = 0.2 == probability that the lion will stay in reserve 2 when it is in reserve 2

03 p23 = 0.3 = probability that the lion will move from reserve 3 to reserve 2
@ Reszewe RES?‘?WE‘ 9 p31 = 0.3 = probability that the lon will move from reserve 1 to reserve 3
0.4 Py = 0.4 = probability that the lion will move from reserve 2 to reserve 3

& Figure 4.12.3 p3 = 0.1 = probability that the lion will stay in reserve 3 when it is in reserve 3

Assuming that ¢ is in months and the lion is released in reserve 2 at time ¢ = 0, track its
probable locations over a six-month period.

Solution Let x,(k), x»(k), and x3 (k) be the probabilities that the lion is in reserve 1,2,
or 3, respectively, at time ¢t = k, and let 3

x1(k)
x(k} = | xa(k)
x3(k)

be the state vector at that time. Since we know with certainty that the lion is in reserve
2 at time ¢ = 0, the initial state vector is

<

x(0) = | 1

o}




 Markov Chains in Terms of
~ Powers of the Transition
fMatrix

[ote that Formula (12) makes
‘possible to compute the state
ector X, without first comput-
g the earlier state vectors as
equired in Formula (11).

Lonig-Term Behavior of a
Markov Chain

X =
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We leave it for you to show that the state vectors over a six-month period are

r0.4007] 052077 0.5007]
x(1) = Px(0) = | 0.200 |, x(2) = Px(1) = | 0240 |, x(3)= Px(2) = | 0.224
| 0.400 | | 0.240 | 0.276 ]

70,5057 05047 70.5047
x(4) == Px(3) &~ | 0228 |, x(5)=Px()~ |0.227{, x(6)= Px(5)= |0.227
| 0.267 | 0.269 | [ 0.269 |

As in Example 2, the state vectors here seem to stabilize over time with a probability of
approximately 0.504 that the lion is tn reserve 1, a probability of approximately 0.227
that it is in reserve 2, and a probability of approximately 0.269 that it is in reserve 3. <

In a Markov chain with an initial state of x(0), the successive state vectors are
x(1) = Px(0), x(2)= Px(1), x(3)=Px(2), x(4)=PFPx(3),...

For brevity, it is corumon to denote x(k) by x4, which allows us to write the successive
state vectors more briefly as

X = Pxp, X =PrPx, X3=DPX X4=Px,... (1)

Alternatively, these state vectors can be exprgssed in terms of the mitial state vector x
as :

Pxo, X3 = P(Pxg) = P?xy, X3 = P(P¥x0) = P’x¢, x4=P(P’xp) = P'xq, ...
from which it follows that
x; = PFxg ’ (12)

P EXAMPLE 5 Finding a State Vector Directly from xo
Use Formula (12) to find the state vector x(3) in Example 2.

Solution From (1) and (7), the initial state vector and transition matrix are

0.5 0.8 0.1
X =x(0) = I:OS] and P = [02 09]

We leave it for you fo calculate P? and show that

X = x, = Py | 0362 02197 [05] _ [03905
TREERT 0438 0781 [0.5] T |0.6095

which agrees with the result in (8). -

We have seen two examples of Markov chains in which the state vectors seem to stabilize
after a period of time. Thus, it is reasonable to ask whether all Markov chains have this
property. The following example shows that this is not the case.

B EXAMPLE 8 A Markov Chain That Does Not Stabilize

The matrix
P 0 1
il 0




288 Chapter 4 General Vector Spaces

is stochastic and hence can be regarded as the transition matrix for a Markov chain_ 4
simple calculation shows that P? == I, from which it follows that

J=P?=p*=pS=... and P=P' =P =P'=...
Thus, the successive states in the Markov chain with initial vector X, are
xy, PXy, X0, Pxp, Xg,...

which oscillate between xo and Pxp. Thus, the Markov chain does not stabilize unlegg
both components of xq are & (verify). @

A precise definition of what it means for a sequence of nummbers or vectors to stabilize
is given in calculus; however, that level of precision will not be needed here. Stateqd
informally, we will say that a sequence of vectors

X1, X2,..., Xky e

approaches a limit q or that it converges to q if all entries in X, can be made as close
as we like to the corresponding entries in the vector ¢ by taking & sufficiently large. We
denote this by writing Xz —-q as k +> c.

We saw in Example 6 that the state vectors of a Markov chain need not approach a
limit in all cases. However, by imposing a mild condition on the transition matrix of a
Markov chain, we can guarantee that the state vectors will approach a limit.

DEFINITION 2 A stochastic matrix P is said to be regular if P or some positive
power of P has all positive entries, and a Markov chain whose transition matrix is
regular is said to be a regular Markov chain.

P EXAMPLE 7 Regular Stochastic Matrices

The transition matrices in Examples 2 and 4 are regular because their entries are positive.
The matrix
P 05 1
o5 o0
is regular because
P2 0.75 05
0.25 0.5

has positive entries. The matrix P in Example 6 is not regular because P and every
positive power of P have some zero entries (verify). <

The following theorem, which we state without proof, is the fundamental resuli about
the long-term behavior of Markov chains.

foraregula - Markov _c’hain, then: ' .
; q_q : .
tate vectors, '
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The vector ¢ in this theorem is called the steady-state vector of the Markov chain. It can
be found by rewriting the equation in part (a) as

I-P)g=0

and then solving this equation for q subject to the requirement that q be a probability
vector. Here are some examples.

B EXAMPLE 8 Examples 1 and 2 Revisited
The transition matrix for the Markov chain in Example 2 is

P 0.8 0.1

102 0.9
Since the entries of P are positive, the Markov chain is regular and hence has a unique
- steady-state vector q. To find q we will solve the system (7 — P)q = 0, which we can

write as
02 —01}[q:] [0
0.2 01} lg] |0
The general solution of this system 18

q1 :0.5.5*, g, = §

(verify), which we can write in vector form as

. BrARCEIRES
q—[gj—[ § }ﬁ s =

Forgtobea probability vector, we must have
l=g1+¢=3s

which implies that s = % Substituting this value in (13} yields the steady-state vector

q:

WY W

which is consistent with the numerical results obtained in (9).

B EXAMPLE 9 Example 4 Revisited
The transition matrix for the Markov chain in Example 4 is

0.5 04 0.6
P=102 02 03
0.3 04 01

Since the entries of P are positive, the Markov chain is regular and hence has a unique
steady-state vector ¢. To find q we will solve the system (I — P)q = 0, which we can
write (using fractions) as

I
I

hpd Ll Lo
|

e Slw v
)
[3%)
Il
<>

—
o

=
<

i

(14)

Sl = pf=

E

g3 0
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{We have converted to fractions to avoid roundoff error in this illustrative example.) We
leave it for you to confirm that the reduced row echelon form of the coefficient matrix ig

10 =%
0 1 -
0 0 0
and that the general solution of (14) is
g=%s, p=%s, @&=s (15)

For q to be a probability vector we must have g1 + ¢» + g3 = 1, from which it follows
thats = %%9— (verify). Substituting this value in (15) yields the steady-state vector

o

0

5 | [0.5042

2 ~
q=|Z |~ | 02269
a2 | L0.2689

oy
—
D

(verify), which is consistent with the results obtained in Example 4. €

Concept Review

» Dynamical systemn + Probability » Transition matrix

+ State of a variable « Probability vector « Regular stochastic matrix

« State of a dynamical system » Stochastic matrix + Regular Markov chain

« Stochastic process « Markov chain - Steady-state vector

Skiils

« Determine whether a matrix is stochastic. + Determine whether a Markov chain is regular.

- Compute the state vectors from a transition matrix and « Find the steady-state vector for a regular transition
an initial state. matrix.

+ Determine whether a stochastic matrix is regular.

ExerCISe Se{ 4..1-2. |

7 In Exercises 1-2, determine whether Aisa stochastic matrix.
If A is not stochastic, then explain why not.

= Tn Exercises 3—4, use Formulas (11) and (12) to compute the
state vector x4 in two different ways. -

0.4 0.3 04 0.6 0.5 0-6] [0'5]
1. = = 3. P = \: ; X =
@ A=lg6 0.7] () 4 [0.3 0.7] 0.5 04 05
B 1
I Yoosoog . Pz[o.s 0.5]_XO=[1]
() A=|0 0 % (d) A= % % __;_ 0.2 03]’ 0
0 3 3 3 3 1 i In Exercises 56, determine whether P is a regular stochastic
02 0.9 02 0.8 matrix.
2. (a A=[' } b) A= ] 1l 1 1
) 08 0.1 ®) 109 0.1 5 (a) P= i ; (b) P= i € P = i
i1 1 11 37 7 1 3 0
12 9 6 3 2
=1 3 — 11 L 1 2 301
2 R S ES S IR N L RS
3 5 0 L 2 3 0 7 0 03 i




# In Exercises 7-19, verify that P is a regular stochastic matrix,
wnd find the steady-state vector for the associated Markov chain.

L, )
12 0.2 0.6
|31 0.8 0.4
1 1 1l 1 2
7.7 0 573

pelill 0. p=|0 3 2
1 2 2 1
s 05 15 0 3

:'1:1, Consider a Markov process with transition matrix

State 1 State 2

State1| 0.2 0.1
State 2| 0.8 0.9

{a) What does the entry 0.2 represent?
{(b) What does the entry 0.1 represert?

(c} Ifthe system is in state 1 initially, what is the probability
that it will be in state 2 at the next observation?

- (d) Ifthe systemhas a 50% chance of being in state 1 initially,
what is the probability that it will be in state 2 at the next
observation?

12. Consider a Markov process with transition matrix

State 1  State 2

State 1 [ 0 ]

State2|
(c) Ifthe systern is in state 1 initially, what is the probability
that it will be in state | at the next observation?

R [Ny o

(a) What does the entry % represent?
(b) What does the entry 0 represent?

(d} Ifthe systern has a 50% chance of being in state 1 initially,
what is the probability that it will be in state 2 at the next
observation?

13, On a given day the air quality in a certain city is either good
or bad. Records show that when the air quality is good on one
day, then there is a 95% chance that it will be good the next
day, and when the air quality is bad on one day, then there is
a 45% chance that it will be bad the next day.

{a) Find a transition matrix for this phenomenon.

(b) Ifthe air quality is good today, what is the probability that
it will be good two days from now?

(c) Ifthe air quality is bad today, what is the probability that
it will be bad three days from now?

(d) If there is a 20% chance that the air quality will be
good today, what is the probability that it will be good
tomorrow?

4, In a laboratory experiment, a mouse can choose one of two
food types each day, type I or type II. Records show that if
the mouse chooses type I on a given day, then there is a 75%

412 Dynamical Systerns and Markov Chains 291

chance that it will choose type I the nexi day, and if it chooses
type Il on one day, then there is a 50% chance that it will
choose type II the next day.

(a) Y¥ind a transition mairix for this phenomenon.

{b) If the mouse chooses type I today, what is the probability
that it will choose type I two days from now?

(c) If the mouse chooses type Il today, what is the probability
that it will choose type 1I three days from now?

(d) ifthere isa 10% chance that the mouse will choose type
I today, what is the probability that it will choose type I
tomorrow?

15, Suppose that at some initial point in time 100,000 people live
in a certain city and 25,000 people live in its suburbs. The
Regional Planning Commission determines that each yvear 5%
of the city population moves to the suburbs and 3% of the sub-
urban population moves to the city.

{a) Assuming that the total population remains constant,
make a table that shows the populations of the city and
its suburbs over a five-year period (round to the nearest
integer).

(o) Overthe long tern, how will the population be distributed
between the city and its suburbs?

16. Suppose that two competing television stations, station 1 and
station 2, each have 50% of the viewer market at some nitial
pointin time. Assume that over each one-year period station 1
captures 5% of station 2’s market share and station 2 capiures
10% of station 1’ market share.

(a) Make a table that shows the market share of each station
over a five-year period.

(b} Over the long term, how will the market share be dis-
tributed between the two stations?

17. Suppose that a car rental agency has three locations, num-
bered 1, 2, and 3. A customer may rent a car from any of
the three locations and return it to any of the three locations.
Records show that cars are rented and returned in accordance
with the following probabilities:

Rented from Location

1 2 3

1 1 3

Iy 3 5

Returned to 4 3 1
Laocation i 10 3

1 i 1

3 10 7z 5

(a) Assuming that a car is rented from location 1, what is the
probability that it will be at location 1 after two rentals?

(b) Assuming that this dynamical system can be modeled as
a Markov chain, find the steady-state vector.

{c) If the rental agency owns 120 cars, how many parking
spaces should it allocate at each location to be reasonably
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certain that it will have enough spaces for the cars over
the long term? Explain your reasoning.

18. Physical traits are determined by the genes that an offspring
receives from its parents. In the simplest case a trait in the
offspring is determined by one pair of genes, one member of
the pair inherited from the male parent and the other from the
femnale parent. Typically, each gene in a pair can assume one
of two forms, called alleles, denoted by A and a. This leads
to three possible pairings:

AA, Aa, aa

called genotypes (the pairs Aa and aA determine the same
trait and hence are not distinguished from one another). It is
shown in the study of heredity that if a parent of known geno-
type is crossed with a random parent of unknown genotype,
then the offspring will have the genotype probabilities given
in the following table, which can be viewed as a transition
matrix for a Markov process:

Genotype of Parent
AA Aa  aa
1 1
AA | 3 T 0
Genotype of 1 1 1
Offspring 2 ? 2
. 1
aa 0 + 3

Thus, for example, the offspring of a parent of genotype AA
that is crossed at random with a parent of unknown genotype
will have a 50% chance of being AA, a 50% chance of being
Aq, and no chance of being aa.

(a) Show that the transition matrix is regular.

{b) Find the steady-state vector, and discuss its physical in-
terpretation.

19. Fill in the missing entries of the stochastic matrix

1 1
W of o3

— 3
P=1] % T *
1l 3 3
w5 10

and find its steady-state vector.

Supplementary Exerci

1. Let V be the set of all ordered pairs of real mumbers, and

consider the following addition and scalar multiplication op-
erations on u = {uy, U, 43} and v = (vy, vz, ¥3):
w+v=(u + v, uy+ 2,85+ v), ku= (kup, 0,0)

(a) Compute w- vand ku foru = (3, -2,4),
v={(1,5-2),and k = —1.

20, If P is an n x n stochastic matrix, and if M isal x »n Matrjy
whose entries are all 1’s, then MP =

21. If P is a regular stochastic matrix with steady-state vector q
what can you say about the sequence of products ’
Pq, Pq,

Pq,..., P4q,...

as k—co?

22. (a) If Pisaregularn X n stochastic matrix with steady-state
vector q, and if ey, ey, .. ., €, are the standard unzt vectorg
in column form, what can you say about the behavioy of
the sequence

Pze,-, Pse‘g,...,

Pe;, PFe,, ...

ask—ooforeachi = 1,2,...,n7

(b) What does this tell you about the behavior of the column
vectors of P* as k- a0?

23, Prove that the product of two stochastic matrices is a stochas-
tic matrix. [Hint: Write each column of the product as a linear
combination of the colunms of the first factor.]

24. Prove that if P is a stochastic matrix whose entries are all
greater than or equal to o, then the entries of P? are greater
than or equal to p.

True-False Exercises

In parts (ay(e) determine whether the statement is true or false,
and justify your answer.

L
3

(a) The vector | 0 | is a probability vector.

2
L3
o2 1], o
(b) The matrix 0.8 0 is a regular stochastic matrix.

(c) The column vectors of a transition matrix are probability
vectors.

(d) A steady-state vector for a Markov chain with transition matrix
P is any solution of the linear system (I — P)q=10.

(e} The square of every regular stochastic matrix is stochastic.

(b) In words, explain why V is closed under addition and
scalar multiplication.

{c) Since the addition operation on V is the standard addition
operation on R?, certain vector space axioms hold for V
because they are known to hold for B*. Which axioms in
Definition 1 of Section 4.1 are they?




