Functions of one variable (review).

Interpret the function:
 as a **graph** $y = f(x)$
 as the **position of a particle** $y = g(t)$ at time t.

The derivative: **slope of tangent line** or **velocity**.

At a local maximum or minimum the derivative is zero.
Example: Standard minimum \(f(x, y) = x^2 + 3y^2 \)

Find critical points:

\[
\partial_x f(x, y) = 2x, \quad \partial_y f(x, y) = 6y
\]

so the only critical point is the origin, \((0, 0)\).

Second derivative test:

\[
\partial_{xx} f(x, y) = 2, \quad \partial_{xy} f(x, y) = 0, \quad \partial_{yy} f(x, y) = 6
\]

\(f''(0, 0) \) is the diagonal matrix

\[
f''(0, 0) = \begin{pmatrix} 2 & 0 \\ 0 & 6 \end{pmatrix}.
\]

This is *positive definite* so the origin is a local minimum.
Example: Standard maximum \(f(x, y) = -(x^2 + y^2) \)

![Graph of standard maximum function](image1.png)

Example: Standard saddle \(f(x, y) = -x^2 + 3y^2 \)

![Graph of standard saddle function](image2.png)
Example: \[f(x, y) = \frac{3x^4 - 4x^3 - 12x^2 + 12}{12(1 + y^2)} \]

The curve on the left is \(f(x, 0) \). From the graph you see one saddle, one max, and one min, all on the \(x \) axis.

Compute the critical points:

\[\partial_x f(x, y) = \frac{x^3 - x^2 - 2x}{1 + y^2}, \quad \partial_y f(x, y) = \frac{- (3x^4 - 4x^3 - 12x^2 + 12)y}{6(1 + y^2)^2} \]

Critical points: \((0, 0),\ (−1, 0),\ (2, 0)\).
Second derivative test. The second partial derivatives take more work to compute:

\[
f''(x, y) = \begin{pmatrix}
\frac{3x^2 - 2x - 2}{1+y^2} & -\frac{2(3x^3 - x^2 - 2x)y}{(1+y^2)^2} \\
-\frac{2(x^3 - x^2 - 2x)y}{(1+y^2)^2} & \frac{-2(x^3 - x^2 - 2x)y}{(1+y^2)^2}
\end{pmatrix}
\]

Thus, the second derivative matrices at the critical points are:

\[
f''(0, 0) = \begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix} \quad \text{max}
\]

\[
f''(2, 0) = \begin{pmatrix} 6 & 0 \\ 0 & \frac{10}{3} \end{pmatrix} \quad \text{min}
\]

\[
f''(-1, 0) = \begin{pmatrix} 3 & 0 \\ 0 & \frac{-7}{6} \end{pmatrix} \quad \text{saddle}
\]
EXAMPLES OF DEGENERATE CRITICAL POINTS
Moral: the second derivative test is inconclusive.

Degenerate saddle at the origin:

\[f(x, y) = x^2 + y^3 \]

\[f''(0, 0) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \]
Degenerate minimum at the origin:

\[f(x,y) = x^2 + y^4 \]

\[f''(0,0) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \]
Degenerate maximum at the origin:

\[f(x, y) = -(x^4 + y^4) \]

\[f''(0, 0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \]
Degenerate *monkey* saddle at the origin:

\[f(x, y) = x^3 - 3xy^2 = \Re\{(x + iy)^3\} \]

\[f''(0, 0) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \]
Example: \(f(x, y) = (2x^2 + 3y^2)e^{(1-x^2-y^2)} \)

Clearly we see five critical points: two maxima, two saddle points, and one minima (in the pit).

Find them:

\[
\partial_x f(x, y) = 2x[2 - (2x^2 + 3y^2)]e^{(1-x^2-y^2)}
\]
\[
\partial_y f(x, y) = 2y(3 - (2x^2 + 3y^2)]e^{(1-x^2-y^2)}.
\]

So \(\partial_x f(x, y) = 0 \) and \(\partial_y f(x, y) = 0 \) at the five points

\((0, 0), \ (\pm 1, 0), \ \text{and} \ (0, \pm 1)\).
Classify the critical points (second derivative test):

\[
\begin{align*}
\partial_{xx} f(x, y) &= 2[2 - 8x^2 - (1 - 2x^2)(2x^2 + 3y^2)]e^{1-x^2-y^2} \\
\partial_{xy} f(x, y) &= 4xy[-5 + (2x^2 + 3y^2)]e^{1-x^2-y^2} \\
\partial_{yy} f(x, y) &= 2[3 - 12y^2 - (1 - 2y^2)(2x^2 + 3y^2)]e^{1-x^2-y^2}
\end{align*}
\]

Thus the second derivative (Hessian) matrices

\[
f''(x, y) = \begin{pmatrix}
\partial_{xx} f(x, y) & \partial_{xy} f(x, y) \\
\partial_{xy} f(x, y) & \partial_{yy} f(x, y)
\end{pmatrix}
\]

at these five critical points are (as anticipated)

\[
\begin{align*}
f''(0, 0) &= \begin{pmatrix} 4e & 0 \\ 0 & 6e \end{pmatrix} \quad \text{local minimum} \\
f''(\pm 1, 0) &= \begin{pmatrix} -8 & 0 \\ 0 & 2 \end{pmatrix} \quad \text{saddles} \\
f''(0, \pm 1) &= \begin{pmatrix} -2 & 0 \\ 0 & -12 \end{pmatrix} \quad \text{maxima.}
\end{align*}
\]

Exercise Let \(A \) be an \(n \times n \) real invertible symmetric matrix and \(f(X) := \langle x, Ax \rangle e^{-\|X\|^2}, \ X \in \mathbb{R}^n \). Show that critical points of \(f \) are precisely the origin and the \(\pm \) unit eigenvectors of \(A \). If the eigenvalues of \(A \) are distinct, there are \(2n+1 \) critical points. [The classification of these critical points is more complicated – but reasonable. For instance, it is clear that \(f''(0) = 2A \).]
"Intuition" is Unreliable

Let $f(x,y)$ be a smooth function on \mathbb{R}^2 with only one critical point: a strict local minimum at the origin.

Must this be the global minimum?

For a function of one variable, this must be the global min – but not for functions of several variables. The simplest example is probably the polynomial

$$f(x,y) := (1 - y)^3 x^2 + y^2$$

Perhaps easier to visualize are

$$f(x,y) := (1 - y^2)^3 x^2 + y^2 \quad \text{and} \quad g(x,y) := \frac{(1 - y^2)^3 x^2 + y^2}{(1 + y^2)^3}$$