Directions This exam has two parts. Part A has shorter 5 questions, (10 points each so total 50 points) while Part B had 4 problems (15 points each, so total is 60 points). Maximum score is thus 110 points.

Closed book, no calculators or computers– but you may use one 3” × 5” card with notes on both sides. Clarity and neatness count.

Part A: Five short answer questions (10 points each, so 50 points).

A–1. Which of the following sets are linear spaces? [If not, why not?]

a) In \mathbb{R}^3, the span of $\begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$.

b) The points $\vec{x} = (x_1, x_2, x_3)$ in \mathbb{R}^3 with the property $x_1 - 2x_3 = 5$.

c) The set of points $(x, y) \in \mathbb{R}^2$ with $y = 2x + x^2$.

d) The set of once differentiable solutions $u(x)$ of $u' + 3x^2u = 0$. [You are not being asked to solve this equation.]

e) The set of polynomials $p(x)$ of degree at most 2 with $p'(1) = 0$.

<table>
<thead>
<tr>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
</tr>
<tr>
<td>A-2</td>
</tr>
<tr>
<td>A-3</td>
</tr>
<tr>
<td>A-4</td>
</tr>
<tr>
<td>A-5</td>
</tr>
<tr>
<td>B-1</td>
</tr>
<tr>
<td>B-2</td>
</tr>
<tr>
<td>B-3</td>
</tr>
<tr>
<td>B-4</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

A–2. Let \(S \) be the linear space of \(2 \times 2 \) matrices \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) with \(2a + d = 0 \). Find a basis and compute the dimension of \(S \).

A–3. Let \(S \) and \(T \) be linear spaces and \(L : S \to T \) be a linear map. Say \(\vec{v}_1 \) and \(\vec{v}_2 \) are (distinct!) solutions of the equations \(L\vec{x} = \vec{y}_1 \) while \(\vec{w} \) is a solution of \(L\vec{x} = \vec{y}_2 \). Answer the following in terms of \(\vec{v}_1 \), \(\vec{v}_2 \), and \(\vec{w} \).

a) Find some solution of \(L\vec{x} = 2\vec{y}_1 - 7\vec{y}_2 \).

b) Find another solution (other than \(\vec{w} \)) of \(L\vec{x} = \vec{y}_2 \).
A–4. Say you have matrices A and B.
 a) If $A : \mathbb{R}^7 \to \mathbb{R}^7$, what are the possible dimensions of the kernel of A? The image of A?

 b) If $B : \mathbb{R}^3 \to \mathbb{R}^5$, what are the possible dimensions of the kernel of B? The image of B?

A–5. Give an example of 2×2 matrices A and B with $AB = 0$ but $A \neq 0$ and $B \neq 0$.
PART B Four questions, 15 points each (so 60 points total).

B–1. Let \(C = \begin{pmatrix} 1 & 0 & -2 & 1 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix} \). [NOTE: In this problem, there is no partial credit for incorrect computations.]

a) Find the inverse of \(C \).

b) Find the inverse of \(C^2 \).
B–2. Define the linear maps A, B, and C from $\mathbb{R}^2 \to \mathbb{R}^2$ by the rules

- A rotates vectors by $\pi/2$ radians counterclockwise.
- B reflects vectors across the vertical axis.
- C orthogonal projection onto the vertical axis, so $(x_1, x_2) \to (0, x_2)$

Let M be the linear map that first applies A, then B, and finally C. Find a matrix that represents M in the standard basis for \mathbb{R}^2.
B–3. Let the linear map \(A : \mathbb{R}^3 \to \mathbb{R}^3 \) be specified by the matrix
\[
A := \begin{pmatrix} 3 & 1 & 0 \\ 1 & 1 & -2 \\ 2 & 1 & -1 \end{pmatrix}.
\]

a) Find a basis for the kernel of \(A \).

b) Find a basis for the image of \(A \).

c) With the above matrix \(A \), is it possible to find an invertible \(3 \times 3 \) matrix \(B \) so that the matrix \(AB \) is invertible?
B–4. Say you are given the four data points \((-1, 0), (1, 2), (4, -2),\) and \((5, 3)\). Find a polynomial \(p(x)\) of degree at most three that passes through these four points. [Don’t bother to “simplify” your answer.]