ODE-Coupled

As a mapping, the matrix $A := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is an orthogonal reflection across the line $x_1 = x_2$. The eigenvectors V have the property that $A\vec{v} = \lambda \vec{v}$ for some constant λ. On geometric grounds, under this reflection the points on this line $x_1 = x_2$ are fixed while the points on the line $x_2 = -x_1$ are reflected. In particular

$$A : \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{and} \quad A : \begin{pmatrix} 1 \\ -1 \end{pmatrix} \rightarrow \begin{pmatrix} -1 \\ 1 \end{pmatrix} = - \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

If we let $\vec{v}_1 := \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\vec{v}_2 := \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, then $A\vec{v}_1 = \vec{v}_1$ and $A\vec{v}_2 = \vec{v}_2$, so \vec{v}_1 and \vec{v}_2 are eigenvectors of A with corresponding eigenvalues $\lambda_1 = 1$ and $\lambda_2 = -1$. These vectors form a basis of \mathbb{R}^2 that is particularly useful to use for problems involving this matrix A.

To illustrate, we solve the differential equations

$$\begin{align*}
\frac{dx_1}{dt} &= x_2 \\
\frac{dx_2}{dt} &= x_1
\end{align*}$$

that is,

$$\frac{d\vec{x}}{dt} = A\vec{x}, \quad (1)$$

with initial conditions $x_1(0) = 4$ and $x_2(0) = 0$. In the above, $\vec{x}(t) := \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$. These equations are **coupled** since they both involve $x_1(t)$ and $x_2(t)$.

METHOD 1 We use the eigenvectors of A as our new basis

$$\vec{x}(t) = u_1(t)\vec{v}_1 + u_2(t)\vec{v}_2, \quad (2)$$
where the coefficients \(u_1(t) \) and \(u_2(t) \) are to be found. Substitute this into both sides of equation (1). Since neither \(\vec{v}_1 \) nor \(\vec{v}_2 \) depend on \(t \) we find:

\[
\frac{d\vec{x}(t)}{dt} = \frac{du_1(t)}{dt}\vec{v}_1 + \frac{du_2(t)}{dt}\vec{v}_2.
\]

Also, since the \(\vec{v}_j \) are eigenvectors of \(A \):

\[
A\vec{x} = u_1(t)A\vec{v}_1 + u_2(t)A\vec{v}_2 = u_1(t)\vec{v}_1 - u_2(t)\vec{v}_2.
\]

Thus, from equation (1)

\[
0 = \frac{d\vec{x}(t)}{dt} - A\vec{x}(t) = \left[\frac{du_1(t)}{dt} - u_1(t) \right] \vec{v}_1 + \left[\frac{du_2(t)}{dt} + u_2(t) \right] \vec{v}_2.
\]

Because \(\vec{v}_1 \) and \(\vec{v}_2 \) are linearly independent, their coefficients must both be zero:

\[
\frac{du_1(t)}{dt} = u_1(t) \quad \quad \quad \quad \frac{du_2(t)}{dt} = -u_2(t).
\]

Note these equations are **uncoupled** – and are easy to solve:

\[
u_1(t) = c_1 e^t \quad \quad \quad u_2(t) = c_2 e^{-t},
\]

where \(c_1 \) and \(c_2 \) are any constants. Shortly they will be determined by the initial conditions.

Substituting this into equation (2), we find that

\[
\vec{x}(t) = c_1 e^t \begin{pmatrix} 1 \\ 1 \end{pmatrix} + c_2 e^{-t} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} c_1 e^t + c_2 e^{-t} \\ c_1 e^t - c_2 e^{-t} \end{pmatrix}.
\]

Now we use the initial condition to find the constants \(c_1 \) and \(c_2 \):

\[
\begin{pmatrix} 4 \\ 0 \end{pmatrix} = \vec{x}(0) = \begin{pmatrix} c_1 + c_2 \\ c_1 - c_2 \end{pmatrix}.
\]

Therefore \(c_1 = c_2 = 2 \) so the desired solution is

\[
\vec{x}(t) = \begin{pmatrix} 2e^t + 2e^{-t} \\ 2e^t - 2e^{-t} \end{pmatrix},
\]
that is,
\[x_1(t) = 2e^t + 2e^{-t}, \quad x_2(t) = 2e^t - 2e^{-t}. \]

METHOD 2 This is essentially identical, but here we explicitly introduce the change of coordinates \(S \) from the standard basis to the new basis consisting of the eigenvectors of \(A \). We want \(S^{-1}AS = D \) where \(D \) is the diagonal matrix consisting of the eigenvalues of \(A \), so

\[
D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

Computational Note If \(S = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) and \(D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \), then

\[
SD = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} \lambda_1 a & \lambda_2 b \\ \lambda_1 c & \lambda_2 d \end{pmatrix}
\]

so the columns of \(S \) are multiplied by the \(\lambda_j \)'s (\(DS \) multiplies the rows of \(S \) by the \(\lambda_j \)'s).

By general theory, the columns \(S \) are the corresponding eigenvectors of \(A \)

\[
S = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.
\]

Since \(A = SDS^{-1} \), we substitute this into equation (1)

\[
\frac{d\tilde{x}}{dt} = A\tilde{x} = SDS^{-1}\tilde{x}, \quad \text{that is,} \quad \frac{d(S^{-1}\tilde{x})}{dt} = DS^{-1}\tilde{x}
\]

and are let to make the change of variable \(\tilde{u} = S^{-1}\tilde{x} \) to find

\[
\frac{d\tilde{u}}{dt} = D\tilde{u}, \quad \text{that is,} \quad \frac{du_1}{dt} = u_1, \quad \frac{du_2}{dt} = -u_2.
\]

These are exactly the equations (3) we found above. Thus

\[
\tilde{u}(t) = \begin{pmatrix} c_1e^t \\ c_2e^{-t} \end{pmatrix},
\]
so, just as before,

$$\vec{x}(t) = S\vec{u}(t) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} c_1 e^t \\ c_2 e^{-t} \end{pmatrix} = \begin{pmatrix} c_1 e^t + c_2 e^{-t} \\ c_1 e^t - c_2 e^{-t} \end{pmatrix}. $$

Again, we can use the initial condition to find the constants c_1 and c_2.

Exercise: Say you have a sequence of vectors $\vec{x}_1, \vec{x}_2, \ldots$ with the property that $\vec{x}_{k+1} = A\vec{x}_k$, where A is the above 2×2 matrix, and say the initial vector $X_0 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$. Compute \vec{x}_k by using a basis consisting of the eigenvectors of A: $x_k = a_k \vec{v}_1 + b_k \vec{v}_2$.

Since our map A is just an orthogonal reflection, without any computation (or mention of eigenvectors) the answer is obviously that if k is even, then $\vec{x}_k = \vec{x}_0$ while if k is odd, then $\vec{x}_k = \vec{x}_1$ is the reflected vector. The point of this problem is that the identical computation works in the general case where A is any $n \times n$ matrix that can be diagonalized.