Problem Set 9

Due: In class Thursday, Apr. 11. Late papers will be accepted until 1:00 PM Friday.

Lots of problems. Fortunately many are short.

1. This asks you to come up with four examples. In each case, find a real matrix (perhaps 2×2) that is:
 a) Both invertible and diagonalizable.
 b) Not invertible, but diagonalizable.
 c) Not diagonalizable but is invertible.
 d) Neither invertible nor diagonalizable.

2. Let $A := \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$.
 a) Find the eigenvalues of A.
 b) Is the origin a stable equilibrium of the discrete dynamical system $\vec{x}_{k+1} = A\vec{x}_k$? Explain.

3. [Bretscher, Sec. 7.5 #14] Let $A = \begin{pmatrix} 1 & -2 \\ 1 & -1 \end{pmatrix}$. Find an invertible matrix S so that $S^{-1}AS = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$.

4. [Bretscher, Sec. 7.6 #18] If $\vec{x}(t+1) = A\vec{x}(t)$, where $A := \begin{pmatrix} -0.8 & 0.6 \\ -0.8 & -0.8 \end{pmatrix}$ and $\vec{x}(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, find a real closed formula for the trajectory $\vec{x}(t)$. Also, draw a rough sketch.

5. [Bretscher, Sec. 7.5 #24] Find all the eigenvalues of $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 5 & -7 & 3 \end{pmatrix}$.

6. [Bretscher, 5th ed Sec. 7.5 #32(a)] Consider the dynamical system $\vec{x}(t+1) = A\vec{x}(t)$, where $A := \begin{pmatrix} 0.4 & 0.1 & 0.5 \\ 0.4 & 0.3 & 0.1 \\ 0.2 & 0.6 & 0.4 \end{pmatrix}$, perhaps modeling the way people search a mini-web. Using technology (say the Maple example I did in class: http://hans.math.upenn.edu/~kazdan/312S13/Maple/MarkovChain.mw), compute high powers of A, say A^6, A^{16} and A^{32}, and make a conjecture about $\lim_{t \to \infty} A^t$.

1
7. [Bretscher, Sec. 7.3 #28] Let \(B := \begin{pmatrix} k & 1 & 0 & 0 \\ 0 & k & 1 & 0 \\ 0 & 0 & k & 1 \\ 0 & 0 & 0 & k \end{pmatrix} \) where \(k \) is an arbitrary constant. Find the eigenvalue(s) of \(B \) and determine both their algebraic and geometric multiplicities. [*Note: First try the analogous \(2 \times 2 \) case.*]

8. Let \(A \) be an \(n \times n \) real matrix. If \(A \) is orthogonally similar to a real diagonal matrix \(D \), must \(A \) be symmetric? Proof or counterexample [The matrices \(A \) and \(B \) are *orthogonally similar* if \(A = RBR^{-1} \) for some orthogonal matrix \(R \).]

9. [Bretscher, Sec. 8.1 #24] Find an orthonormal eigenbasis for
\[
\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.
\]

10. [Bretscher, Sec. 8.1 #38] Let \(A \) be a symmetric \(2 \times 2 \) matrix with eigenvalues \(-2\) and \(3 \) and \(u \in \mathbb{R}^2 \) any unit vector. What are the possible values of \(\langle u, Au \rangle \)? Illustrate your answer in terms of the unit circle and its image under \(A \).

11. Of the following three matrices, one can be orthogonally diagonalized; one can be diagonalized (but not orthogonally); and one cannot be diagonalized at all. Identify these – *fully explaining your reasoning.*

\[
A = \begin{pmatrix} 0 & 3 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 0 & 2 \\ 1 & 2 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}.
\]

12. [Bretscher, Sec. 8.2 #18] Sketch the curve of points in the plane that satisfy
\[9x_1^2 - 4x_1x_2 + 6x_2^2 = 1.\]

13. a) Let \(D := \begin{pmatrix} 4 & 0 \\ 0 & 25 \end{pmatrix} \) Find a positive definite symmetric matrix \(P \) so that \(P^2 = D \)
 (we call \(P \) the *square root* of \(D \))

b) Let \(A := \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix} \). Find a positive definite (symmetric) matrix \(P \) so that \(P^2 = A \).

c) Show that every positive definite symmetric matrix \(A \) has a positive definite square root.
14. [Bretscher, Sec. 8.2 #28] Show that any positive definite $n \times n$ matrix A can be written as $A = BB^*$, where the columns of B are orthogonal. [HINT: Use the result of the previous problem.]

15. [Bretscher, Sec. 8.2 #26] Consider the quadratic polynomial $Q(x) := \langle x, Ax \rangle$, where A is a real $n \times n$ symmetric matrix. “If for some vector $\bar{v} \neq 0$ we know that $Q(\bar{v}) = 0$, then A cannot be invertible.” Proof or counterexample.

16. Let $f(x, y) := (x^2 + 4y^2)e^{(1-x^2-y^2)}$. Find and classify all of its critical points as local maxima etc.

[Last revised: May 5, 2013]