Directions This exam has two parts. Part A has 4 shorter questions, (5 points each so total 20 points) while Part B had 6 problems (12 points each, so total is 72 points). Maximum score is thus 92 points.
Closed book, no calculators or computers– but you may use one 3′′ × 5′′ card with notes on both sides. Clarity and neatness count.

Part A: Four short answer questions (5 points each, so 20 points).

A–1. Let \(A \) be a 3 × 3 real matrix two of whose eigenvalues are \(\lambda_1 = -2 \) and \(\lambda_2 = 1 - 2i \), with corresponding eigenvectors \(v_1 \) and \(v_2 \), what are \(\lambda_3 \) and \(v_3 \)?

Solution We know that complex eigenvalues come in pairs i.e. \(\lambda_3 = \overline{\lambda_2} = 1 + 2i \) and \(A v_2 = \overline{A} v_2 = \overline{\lambda_2} v_2 \) hence \(v_3 = v_2 \).

A–2. Given a unit vector \(w \in \mathbb{R}^n \), let \(W = \text{span} \{ w \} \) and consider the linear map \(T : \mathbb{R}^n \to \mathbb{R}^n \) defined by

\[
T(x) = 2 \text{Proj}_W(x) - x,
\]
where \(\text{Proj}_W(x) \) is the orthogonal projection onto \(W \). Show that \(T \) is one-to-one.

Method 1 We need to show that the kernel of \(T \) is trivial, so we need to solve:

\[
2 \text{Proj}_W(x) - x = 0 \tag{1}
\]

To the above equation we apply \(T \) again and obtain:

\[
0 = T(2 \text{Proj}_W(x) - x) = 2 \text{Proj}_W(2 \text{Proj}_W(x) - x) - 2 \text{Proj}_W(x) + x
\]

so:

\[
0 = 4 \text{Proj}_W(x) - 2 \text{Proj}_W(x) - 2 \text{Proj}_W(x) + x = x
\]

Hence, the kernel of \(T \) is trivial, namely \(T \) is one-to-one.

Method 2 Since \(w \) is a unit vector, \(\text{Proj}_W(x) = \langle x, w \rangle w \) so equation (1) is

\[
2\langle x, w \rangle w = x.
\]

Taking the inner product of this with \(w \) gives \(2\langle x, w \rangle = \langle x, w \rangle \) so \(\langle x, w \rangle = 0 \). Equation (1) then gives \(x = 0 \).

Method 3 Let \(P : \mathbb{R}^n \to \mathbb{R}^n \) be any projection, not necessarily orthogonal. It has the property \(P^2 = P \). Define

\[
T x := c P x - x
\]

for any constant \(c \). Claim: if \(c \neq 1 \), then \(\ker T = 0 \) (so \(T \) is one-to-one). To see this, apply \(P \) to both sides of \(c P x = x \) and use \(P^2 = P \) to find \(c P x = P x \). Because \(c \neq 1 \), then \(P x = 0 \). Consequently \(x = 0 \).
A–3. Let A be an invertible matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$ and corresponding eigenvectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$. What can you say about the eigenvalues and eigenvectors of A^{-1}? Justify your response.

Solution Since A invertible we have that $A\vec{v}_i = \lambda_i \vec{v}_i$ and $\lambda_i \neq 0$ for all i. Hence by multiplying $\frac{1}{\lambda_i}A^{-1}$ on both sides of $A\vec{v}_i = \lambda_i \vec{v}_i$ we obtain that $A^{-1}\vec{v}_i = \frac{1}{\lambda_i} \vec{v}_i$. So $\frac{1}{\lambda_1}, \ldots, \frac{1}{\lambda_k}$ are the eigenvalues of A^{-1} with the same corresponding eigenvectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$.

A–4. Let A be an $n \times n$ real self-adjoint matrix and \vec{v} an eigenvector with eigenvalue λ. Let $W = \text{span} \{\vec{v}\}$.

a) If $w \in W$, show that $Aw \in W$.

Solution If $w \in W$ then $w = k\vec{v}$. Hence $Aw = Ak\vec{v} = k\lambda \vec{v} \in W$.

b) If $z \in W^\perp$, show that $Az \in W^\perp$.

Solution If $z \in W^\perp$ then $\langle z, \vec{v} \rangle = 0$. Hence $\langle Az, \vec{v} \rangle = \langle z, A^*\vec{v} \rangle = \langle z, A\vec{v} \rangle = \langle z, \lambda \vec{v} \rangle = \lambda \langle z, \vec{v} \rangle = 0$ so $Az \in W^\perp$.

PART B Six questions, 12 points each (so 72 points total).

B–1. Let A be a real symmetric matrix. Say that \vec{v}_1 and \vec{v}_2 are eigenvectors corresponding to distinct eigenvalues $\lambda_1 \neq \lambda_2$. Show that \vec{v}_1 and \vec{v}_2 are orthogonal.

Solution We have that:

$$\lambda_1 \langle \vec{v}_1, \vec{v}_2 \rangle = \langle A\vec{v}_1, \vec{v}_2 \rangle = \langle \vec{v}_1, A^*\vec{v}_2 \rangle = \langle \vec{v}_1, A\vec{v}_2 \rangle = \lambda_2 \langle \vec{v}_1, \vec{v}_2 \rangle$$

$$(\lambda_1 - \lambda_2)\langle \vec{v}_1, \vec{v}_2 \rangle = 0$$

so $\langle \vec{v}_1, \vec{v}_2 \rangle = 0$, namely \vec{v}_1, \vec{v}_2 are orthogonal.

Method 2 Since $\lambda_1 \neq \lambda_2$, at least one of them is not zero. Say $\lambda_2 \neq 0$. Now use

$$\langle A\vec{v}_1, A\vec{v}_2 \rangle = \lambda_1 \lambda_2 \langle \vec{v}_1, \vec{v}_2 \rangle$$

and

$$\langle A^2\vec{v}_1, A\vec{v}_2 \rangle = \lambda_2^2 \langle \vec{v}_1, \vec{v}_2 \rangle = \lambda_2 \lambda_2 \langle \vec{v}_1, \vec{v}_2 \rangle = \lambda_2 \langle A\vec{v}_1, A\vec{v}_2 \rangle = \lambda_2 \lambda_1 \lambda_2 \langle \vec{v}_1, \vec{v}_2 \rangle$$

Now use $\lambda_2 \neq 0$ and $\lambda_1 \neq \lambda_2$ to conclude $\langle \vec{v}_1, \vec{v}_2 \rangle = 0$.

B–2. In a large city, a car rental company has three locations: the Airport, the City, and the Suburbs. One has data on which location the cars are returned daily:

- **Rented at Airport:** 5% are returned to the City and 20% to the Suburbs. The rest are returned to the Airport.
- **Rented in City:** 10% are returned to Airport, 10% returned to Suburbs.
- **Rented in Suburbs:** 20% are returned to the Airport and 5% to the City.
If initially there are 20 cars at the Airport, 65 in the city, and 15 in the suburbs, what is the long-term distribution of the cars?

SOLUTION The equations we obtain from the information given is:

\[x_{k+1} = 0.75x_k + 0.1y_k + 0.2z_k \]
\[y_{k+1} = 0.05x_k + 0.8y_k + 0.05z_k \]
\[z_{k+1} = 0.2x_k + 0.1y_k + 0.75z_k \]

where \(x \)'s, \(y \)'s, \(z \)'s correspond to information about cars rented at airport, city, suburbs respectively. Hence the transition matrix is:

\[
T = \begin{pmatrix}
0.75 & 0 & 0.2 \\
0.05 & 0.8 & 0.05 \\
0.2 & 0.1 & 0.75
\end{pmatrix}
\]

which is regular, so we need to find the probability eigenvector corresponding to the eigenvalue \(\lambda = 1 \). Solving \(T\vec{v} = \vec{v} \) we obtain \(v_1 = v_3 \) and \(v_2 = 0.5v_3 \) where \(\vec{v} = (v_1, v_2, v_3) \). Hence a eigenvector corresponding to \(\lambda = 1 \) is:

\[
\vec{v} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}
\]

so the unique probability eigenvector corresponding to \(\lambda = 1 \) is:

\[
1/5\vec{v} = \begin{pmatrix} 0.4 \\ 0.2 \\ 0.4 \end{pmatrix}.
\]

Now, initially there were 100 cars so the long term distribution is: 40 cars at the Airport, 20 at the City and 40 at the Suburbs.

B–3. Let \(A = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & 2 \\ 1 & 1 & 2 \end{pmatrix} \).

a) What is the dimension of the image of \(A \)? Why?

SOLUTION Since \(\text{im} \ A \) is the column-space of \(A \) we have that \(\text{im} \ A = \text{span} \{(1,1,1)\} \), so \(\text{dim} \ (\text{im} \ A) = 1 \).

b) What is the dimension of the kernel of \(A \)? Why?

SOLUTION From rank-nullity theorem and part (a) we have that \(\text{dim} \ (\ker \ A) = 2 \).

c) What are the eigenvalues of \(A \)? Why?

SOLUTION 1: Since \(\ker \ A \) is 2-dimensional it implies that two of the eigenvalues of \(A \) are 0. Also since the trace of \(A \) (which is equal to 4) is equal to the sum of its eigenvalues we have that the third eigenvalue is equal to 4.

SOLUTION 2: Using the characteristic polynomial of \(A \) which is: \(p_A(\lambda) = \lambda^2(4 - \lambda) \).
d) What are the eigenvalues of $B := \begin{pmatrix} 4 & 1 & 2 \\ 1 & 4 & 2 \\ 1 & 1 & 5 \end{pmatrix}$? Why? [HINT: $B = A + 3I$].

Solution If λ is an eigenvalue of A and v the corresponding eigenvector then:

$$Bv = (A + 3I)v = (\lambda + 3)v$$

hence using part (c) we obtain that the eigenvalues of B are 3, 3, 7.

B–4. For certain polynomials $p(t)$, $q(t)$, and $r(t)$, say we are given the following table of inner products:

<table>
<thead>
<tr>
<th></th>
<th>p</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>4</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>q</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>r</td>
<td>8</td>
<td>0</td>
<td>50</td>
</tr>
</tbody>
</table>

For example, $\langle q, r \rangle = \langle r, q \rangle = 0$. Let E be the span of p and q.

a) Compute $\langle p, q + r \rangle$.

Solution $\langle p, q + r \rangle = \langle p, q \rangle + \langle p, r \rangle = 0 + 8 = 8$

b) Compute $\|q + r\|$.

Solution $\|q + r\| = \sqrt{\langle q, q \rangle + \langle r, r \rangle + 2\langle q, r \rangle} = \sqrt{1 + 50 + 0} = \sqrt{51}$

c) Find the orthogonal projection $\text{Proj}_E r$. [Express your solution as linear combinations of p and q.]

Solution $\text{Proj}_E r = \frac{\langle r, p \rangle}{\langle p, p \rangle} p + \frac{\langle r, q \rangle}{\langle q, q \rangle} q = 2p$.

d) Find an orthonormal basis of the span of p, q, and r. [Express your results as linear combinations of p, q, and r.]

Solution We apply the Gram-Schmidt process to first get an orthogonal basis $\{u_1, Bu_2, Bu_3\}$ and then the orthonormal basis $\{e_1, e_2, e_3\}$:

$$u_1 = q \quad \text{and} \quad e_1 = q$$

$$u_2 = p - \frac{\langle p, q \rangle}{\langle q, q \rangle} q = p - \frac{1}{4}q \quad \text{and} \quad e_2 = \frac{1}{\sqrt{17}}p$$

$$u_3 = r - \frac{\langle r, q \rangle}{\langle q, q \rangle} q - \frac{\langle r, p \rangle}{\langle p, p \rangle} p = r - \frac{2}{\sqrt{17}}p \quad \text{and} \quad e_3 = \frac{r - 2p}{\sqrt{34}}$$

since $\|r - 2p\|^2 = \langle r, r \rangle + 4\langle p, p \rangle - 4\langle r, p \rangle = 50 + 16 - 32 = 34$.

B–5. An $n \times n$ matrix is called nilpotent if A^k equals the zero matrix for some positive integer k. (For instance, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is nilpotent.)
a) If λ is an eigenvalue of a nilpotent matrix A, show that $\lambda = 0$. (Hint: start with the equation $A\vec{x} = \lambda \vec{x}$.)

Solution We have $A\vec{x} = \lambda \vec{x}$ so $A^k\vec{x} = \lambda^k \vec{x}$. Hence $\lambda^k \vec{x} = 0$ so $\lambda = 0$ since $\vec{x} \neq 0$ (because it is an eigenvector).

b) Show that if A is both nilpotent and diagonalizable, then A is the zero matrix. [Hint: use Part a].

Solution From part (a) we deduce that all eigenvalues of A are zero, hence A is similar to the zero matrix hence $A = S(0)S^{-1} = 0$ where 0 the zero matrix and S some matrix.

c) Let A be the matrix that represents $T : \mathcal{P}_5 \to \mathcal{P}_5$ (polynomials of degree at most 5) given by differentiation: $Tp = dp/dx$. Without doing any computations, explain why A must be nilpotent.

Solution Since p polynomial of degree at most 5 we have that T^6 is the zero map ($T^6 = T \circ T \circ T \circ T \circ T \circ T$ composition of T with itself) hence $A^6 = 0$ namely A nilpotent.

B–6. Let $A : \mathbb{R}^k \to \mathbb{R}^n$ be a linear map. Show that

$$\dim(\ker A) - \dim(\ker A^*) = k - n.$$

In particular, for a square matrix, $\dim(\ker A) = \dim(\ker A^*)$.

Solution 1: Since in \mathbb{R}^k, $(\text{im } A^*)^\perp = \ker A$, we have that

$$\dim(\ker A) + \dim(\text{im } A^*) = k$$

Also, since $A^* : \mathbb{R}^n \to \mathbb{R}^k$, by the rank-nullity theorem

$$\dim(\ker A^*) + \dim(\text{im } A^*) = n$$

Then we subtract to obtain:

$$\dim(\ker A) - \dim(A^*) = k - n.$$

Solution 2: Since $A^* : \mathbb{R}^n \to \mathbb{R}^k$, by a homework problem $\dim \text{im } A = \dim \text{im } A^*$. Using rank-nullity theorem we have:

$$\dim(\ker A) - \dim(\ker A^*) = \dim \mathbb{R}^k - \dim \text{im } A - (\dim \mathbb{R}^n - \dim \text{im } A^*) = k - n$$