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SIAM REVIEW ? 1993 Society for Industrial and Applied Mathematics 
Vol. 35, No. 1, pp. 80-93, March 1993 004 

THE PERRON-FROBENIUS THEOREM AND THE RANKING OF FOOTBALL 
TEAMS* 

JAMES P. KEENERt 

Abstract. The author describes four different methods to rank teams in uneven paired competition and 
shows how each of these methods depends in some fundamental way on the Perron-Frobenius theorem. 

Key words. Perron-Frobenius theorem, paired comparisions, ranking, orderings 
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1. Introduction. Throughout the fall of every year, arguments rage over which is 
the best college football team. The AP and UPI polls add to the confusion because they 
are based on votes which are certainly not objective. Many newspapers publish one or 
more additional indices that rank the top football teams, but these are not understood 
or accepted by the general public as easily as the polls, because they are usually based 
on "mathematical formulas." Given the general level of appreciation of mathematics 
among sports fans, these rankings are usually shrouded in mystery. 

I first became interested in the problem of ranking football teams a few years ago 
when the football team at a rival campus won the national championship because it was 
the only undefeated team in the country. I wanted to know if a mathematically based 
ranking scheme would agree with the conclusions of the UPI and AP voters. What I 
learned (beyond what I hoped I would find!) is that a number of ranking schemes rely 
in some fundamental way on the Perron-Frobenius theorem, and that with the problem 
of ranking of teams in uneven paired competition I had discovered a marvelous way to 
motivate students to learn about a beautiful theorem that has in recent times fallen into 
relative obscurity. 

An uneven paired competition is one in which the outcome of competition between 
pairs of teams (also called paired comparisons) is known, but the pairings are not evenly 
matched. That is, the competition is not a round robin in which each team is paired with 
every other team an equal number of times. 

A good ranking scheme has a large number of potential uses. For example, it could 
be used to rank football teams, to create a tennis ladder, or to determine the research 
strength of mathematics departments. However, ranking schemes remove some, but not 
all, subjectivity, and different ranking schemes can give vastly different answers about 
who is number one, depending on the factors that are emphasized by the scheme. 

This paper is about the ranking methods that I use. I use them not because they solve 
with certainty the problem of which team is number one, but because the mathematics is 
fun and well motivated. These methods are excellent vehicles by which to introduce stu- 
dents to interesting and important mathematical ideas, including the Perron-Frobenius 
theorem, the power and inverse power methods for finding eigenvalues of a matrix, and 
fixed point theorems for nonlinear maps. I find that the few minutes I spend each week 
during the fall collecting and entering data for my computer program are justified by the 
increased student interest in the mathematics of the methods generated by my weekly 
posted rankings. It is not difficult for students to write their own computer program to 
test some of these ideas on their favorite competition. 

*Received by the editors January 2, 1992; accepted for publication (in revised form) August 25, 1992. 
tDepartment of Mathematics, University of Utah, Salt Lake City, Utah 84112. 
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THE PERRON-FROBENIUS THEOREM AND RANKING METHODS 81 

In this paper four different ranking schemes are described. The first, in ?2, formu- 
lates the ranking problem as a linear eigenvalue problem and makes direct use of the 
Perron-Frobenius theorem. In ?3, a nonlinear generalization of the first method is de- 
scribed. This method makes use of successive approximations to find a fixed point of 
a nonlinear map. The third and fourth methods attempt to assign a probability to the 
outcome of a contest, and make indirect use of the Perron-Frobenius theorem. Finally, 
in ?6 we show the results of these four schemes when applied to the 1989 NCAA football 
schedule. 

2. The direct method. The first method we describe is perhaps the most direct rank- 
ing method. To each participant in a contest we wish to assign a score that is based on 
the interactions with other participants. The assigned score should depend on both the 
outcome of the interaction and the strength of its opponents. If we suppose there is a 
vector of ranking values r, with positive components rj indicating the strength of the jth 
participant, then we define a score for participant i as 

N 
(2.1) si = ZE aijrj, 

j=1 

where aij is some nonnegative number depending on the outcome of the game between 
participant i and participant j, N is the total number of participants in the competition, 
and ni is the number of games played by participant i. The matrix A with entries aij is 
often called a preference matrix. For example, for football we could pick aij to be 1 if 
team i won the game, 1 if the game ended in a tie, and zero otherwise. The division by 
ni is to prevent teams from accumulating a large score by simply playing extra games. 

Now we propose that the strength (or rank) of a participant should be proportional 
to its score, that is, 

(2.2) Ar = Ar, 

where A is the matrix with entries aij /ni. In other words, the ranking vector r is a positive 
eigenvector of the positive matrix A. 

The Perron-Frobenius theorem tells us when this problem has a solution, as follows. 
THEOREM. If the (nontrivial) matrix A has nonnegative entries, then there exists an 

eigenvector r with nonnegative entries, corresponding to a positive eigenvalue A. Further- 
more, if the matrix A is irreducible, the eigenvector r has strictly positive entries, is unique 
and simple, and the corresponding eigenvalue is the largest eigenvalue of A in absolute value 
(i.e., is equal to the spectral radius of A). 

To clarify the nomenclature, we refer to a vector with nonnegative entries as a non- 
negative vector, and a vector with positive entries as a positive vector. We also introduce 
a partial order on the set of nonnegative vectors by saying that p > q whenever p - q is 
a positive vector and p > q whenever p - q is nonnegative. 

The following are equivalent ways to describe an irreducible matrix. 
(i) A is irreducible if for any two numbers i and j there is an integer p > 0 and a 

sequence of integers k1, k2, . . ., kp, so that the product aik, ak, k2 * akpj O . 
(ii) A is irreducible if there is no permutation that transforms the matrix A into a 

block matrix of the form 
All A12 

0 A22 

with A11 and A22 square matrices. 
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82 JAMES P. KEENER 

(iii) The nonnegative matrix A is irreducible if for any r > 0, Ar > 0. 
For paired competitions, if we take aij = 0 or 1 for a loss or a win, respectively, then 

the matrix A is irreducible if there is no partition of the teams into two sets S and T such 
that no team in S plays any team in T or every game between one team from S and one 
team from T resulted in a victory for the team in S. In particular, for this preference 
matrix to be irreducible, there can be no winless teams. 

The proof of this theorem, while found in a number of older books, has not been 
included in most recent linear algebra books, so we include it in the appendix for com- 
pleteness. 

To calculate the eigenvector r we can use another powerful idea, namely, the power 
method [12], [10]. Since the ranking vector r is a simple eigenvector and corresponds to 
the largest eigenvalue of A, it follows that 

(2.3) l AnroI 

for any nonnegative vector ro. 
Now comes the important question of how to pick the entries of the matrix A, and 

here there is room for subjectivity. We suggested earlier the choice aij = 1 if team i 
beat team j, aij = 2 if team i and j tied, and aij = 0 otherwise. With this choice, if we 
guess an initial ranking vector ro with all entries equal to one, then the ith component 
of Aro is the winning percentage for team i. The ith component of vector A2r0 is the 
average winning percentage of the teams that team i defeated. In some sense, A2r0 
contains information about the strength of schedule. I have heard it suggested by a 
nationally prominent football coach that A2r0 should be used to determine a national 
champion. While this is a better ranking than the winning percentage Aro, it places a 
very high premium on strength of schedule. Of course, he did not express his scheme in 
mathematical notation, and, therefore, did not see the obvious generalization of using 
Anro with large n. We now know that in the limit of n going to infinity, Anro/lAnroI 
converges to the unique positive eigenvector of A, and this eigenvector gives a positive 
ranking for teams. 

The idea of using the matrix A to find a ranking vector has been around for some 
time. Kendall and Babington Smith [6] considered the ranking r = Aro, and the idea of 
powering the matrix A to find a ranking vector was initiated by Wei [13] and Kendall [5], 
and revisited often [1], [4], [9]. 

This simple choice for the entries aij leaves much to be desired. It is adequate for 
sports such as baseball where teams play each other often during a season. If teams play 
each other more than once, then aij is the total number of victories of team i over team j. 
With an increasing number of games, aij becomes a better indicator of the comparative 
strength of the two teams. But in football where teams play each other only once per 
season, there is information in the game score that is discarded when credit is given only 
for the win. For example, under this simple scheme, whether a score is nearly even or 
quite lopsided, all of the credit for the win goes to the winner. Also, a winless team 
has rank zero and, therefore, contributes nothing to the score of its opponents, and a 
matrix with a winless team is not irreducible. In fact, beating a winless team is more 
harmful than not playing that team at all because the winning team earns no points and 
its average point earning decreases. 

A better method is to distribute the one point per game between two competing 
teams in a continuous, rather than discrete way. One way to assign a value to aij is to 
distribute the one point on the basis of the game score. If team i scored Sij points and 
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THE PERRON-FROBENIUS THEOREM AND RANKING METHODS 83 

team j scored Sji points in their encounter, we might award aij = Sij/(Sij + Sji) points 
to team i. This is slightly unfair because in a close defensive game with final score 3-0, 
the winner takes all, even though the two teams were evenly matched. To prevent this, 
we might consider an award of aij = (Sij + l)/(Sij + Sji + 2) to team i, for example. 

With such a scheme there is another weakness, namely, for a good team to show its 
dominance and get an appropriate score for the win, it can show no mercy. To avoid 
having teams run up a score to improve their ranking, the one point could be distributed 
in a nonlinear way. For example, the choice 

aij h Sjj + 

(2.4) a=hSij + Sji + 2 

h(x) = + 2sgn (X -2) VJ2 T1 

has the features that it is continuous, h(2) = 2, and away from x = 2, h goes rapidly to 
zero or 1. A sketch of h(x) is shown in Fig. 1. With an award distribution as in (2.4), to 
obtain a good score it is important to win, but not as useful to run up the score. 

1.0 I 

X 0.5 

0.0 - 
0.0 0.5 1.0 

x 

FIG. 1. Plot of h(x) as a function of x(solid curve) and the line y(x) = x(dashed) shown for comparison. 

3. A nonlinear scheme. Although the Perron-Frobenius scheme seems well moti- 
vated, after examining the results for a number of years its weaknesses became apparent. 
(By weakness, I mean that coaches and fans object to certain features of the ranking, not 
that there is a mathematical deficiency.) With this method, strength of schedule is quite 
important. If a strong team plays mostly weak opponents, with few strong opponents, it 
cannot earn a high ranking. This is because a team can never earn enough points play- 
ing weaker opponents to increase its earned score. Of course, this is not all bad, since 
simply because a team is undefeated does not mean it should have the highest rank, 
particularly if it did not play a difficult schedule. We have found that there is often an 
enormous difference in difficulty of schedule between some of the top ranked football 
teams. 

There are a number of ways to address this problem. We could use this scheme to 
determine a national champion anyway and hope that coaches will eventually come to 
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84 JAMES P. KEENER 

understand that to earn a high ranking they cannot pad their team's schedule with weak 
opponents. This might also force some conferences with only one or two strong teams 
to consider realignment. 

But another dilemma exists, and that is if a team does reasonably well against strong 
opponents, even though it may lose many or even most of its games, it can still earn a 
high ranking. For example, with the above linear method it is not unusual to find teams 
with losing records ranked among the top twenty-five teams. The reason for this is the 
decision implicit in the scheme to base ranking on a point system whereby one must 
earn points to improve one's rank. The teams that can optimize earning points are by 
definition the better teams. This may not be all bad, because some teams that are indeed 
very good nonetheless have losing records. 

Since it is not likely that anytime in the near future coaches will be motivated by this 
ranking scheme to adjust their schedules, we decided to generalize this method to avoid 
the "problem" that a strong team with a weak schedule may be underrated. The idea is 
to calculate the rank for each team as 

N 

(3.1) ri = E f (eijrj), 
n 

j=1 

where eij is a number that is determined from the outcome of the game between team i 
and team j, rj is again the positive rank of team j, and f is some continuous monotone 
increasing function with f (O) = 0, and f (oo) = 1. The advantage of this method is that 
now a team can earn up to a maximum of one point for each game it plays either by doing 
well against a highly ranked team, or by clobbering a poor team, but at least there is a 
way to have a weak schedule and still earn a good score. 

We can again use interesting mathematics to conclude that a positive ranking vector 
r exists. If we define the nonlinear function of r, 

N 

(3.2) Fi(r) =-E f(eijrj), 
j=l 

then F is a bounded, nonlinear map of the positive orthant into itself. If we further 
suppose that f(O) > 0, and that f(x) is a strictly concave function satisfying f(tx) > 
tf(x) for all t, 0 < t < 1, then there is a unique fixed point of the map F(r) in the 
positive orthant that can be found by successive approximation starting with any positive 
vector ro, whereby 

(3.3) lim Fn(ro) = r. 
nf--oo 

The assumption f (0) > 0 implies that a team earns something just for showing up. 
Concavity is not strictly necessary to have a reasonable ranking, but it does guarantee a 
unique ranking vector. The proofs of these facts are relatively simple, and are relegated 
to the appendix. The equation F(r) = r is a nonlinear eigenvector problem for which 
we seek a positive eigenvector, so this result can be viewed as a nonlinear generalization 
of the Perron-Frobenius theorem. 

For this problem we found, after considerable experimentation, that 

(3.4) f(x) = 2 + 05x + x 2 (3.4) f () -- 9 42nsr54+x2' 
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and 
5 + Sij + S2"3 

(3.5) eij = / 7 
5 + S7i + S2/31 

work reasonably well. By reasonably well, we mean only that it gave results that aroused 
the ire of fewer people than did the linear method. A plot of f (x) is shown in Fig. 2. 
The function f (x) in (3.4) is not strictly concave, and neither is f (0) > 0, but it is close 
enough that the iterations (3.3) converge to a useful ranking vector. The function eij 
is shown plotted in Fig. 3 as a function of score Sij for different values of Sji fixed at 
0, 10, 20, 30, and 50. Note that eij = 1 when Sij = Sji, that eij is an increasing function 
of Sij and a decreasing function of Sji. 

1.0 

?$0.5- 

0.0 
0.0 2.5 5.0 

x 

FIG. 2. Plot of the fuinction f (x) as a fuinction of x. 

4- 

2- 

. _ 

0 25 
Si 

FIG. 3. Plots of eij (Sij, Sii) as a function of Sij with Sji = 0, 10, 20, 30, 40, and 50. Since eij (x, x) = 1, 
the value of S3i can be identified by its intersection with the level 1 (dashed line). 
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86 JAMES P. KEENER 

This choice for the map F in (3.2) points out the subjective nature of the methods 
described so far. The methods that follow are less subjective because they have an im- 
proved theoretical basis. 

4. Assessing the probability of winning. Many people like to use ranking systems 
to predict the outcome of games between rivals, and so determining the probability that 
team i will beat team j is of primary interest. To this end, it would be nice if the ranking 
vector r could be given some probabilistic interpretation. 

Suppose the ranking vector r is defined so that the probability 7rij that team i beats 
team j is 

(4.1) =rij=+ r 

Since 7rij + 7rji = 1, it follows that 

(4.2) 7rjiri - 7rijrj = 0. 

Unfortunately, we do not know 7rij, but if we did, we could find r. 
The relationship (4.2) between probability and the ranking vector is one of many 

possibilities in the class of so-called linear models having the form lrij = H(vi - vj), 
where v is the ranking vector [11]. The identification r = ev shows that (4.2) is a linear 
model. Other possibilities for the function H1 are the Heaviside function, or 

rv 

(4.3) 11(v) = e- dx. 

The model (4.3) (due to Mosteller [8]) is motivated by the idea that the ith team has an 
actual performance that is a random variable with mean vi and variance a2, a being the 
same for each team. Then, if a = 1, the probability 7rij that team i beats team j is 

ri = , I( vv ) 

An interesting mathematical problem is to use statistical tests to determine the best lin- 
ear model rl. Bradley [2] gives a test of the hypothesis that the model (4.1) (known as 
the Zermelo model [14]) is correct. 

If we use game scores to estimate 7rij, a reasonable estimate for 7rij is 

(4.4) rij= 
s ij ' 

Sij 3 j 

and (4.2) becomes 

(4.5) Siri -Sijrj = 0. 

If teams i and j do not play each other, we take Sij = Sji = 0. Since, in any season there 
are many more games than there are teams, (4.5) gives many more equations than there 
are unknowns. Perhaps we can find the "best" solution of the overdetermined system 
(4.5) using a least squares method. 

The least squares solution of all of the equations of the form (4.5) is trivial, r = 0, 
and this is not the desired solution. Instead, we seek to minimize the squared error 
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subject to the constraint that r has norm 1. Thus, using the Lagrangian multipliers, we 
seek to minimize 

N\ 
(4.6) (Siri- Sijrj)2 E- ri 1) EA ij i=l 
After differentiating (4.6) with respect to r, we find that a minimum occurs only if r 
satisfies the matrix equation 
(4.7) Br= =r, 

where the matrix B has entries bij given by 

(4.8) bii = E Sk, bij =-SijSji i$j. 
ki 

To understand the solution properties of (4.7), we notice some important properties 
of the matrix B. The matrix B is invertible whenever the columns of the matrix associ- 
ated with (4.5) are linearly independent, and it is reasonable to assume that this occurs 
naturally with enough games. The matrix B has positive diagonal and nonpositive off 
diagonal entries. 

For some number A0 > 0, the shifted matrix B' = B + AoI is diagonally dominant. 
Then, for the vector ro with all entries equal to 1, B'ro has all positive entries. Now, 
notice what happens to the faces of the positive orthant under transformation by B'. If 
rj has all entries positive except its jth entry which is zero, then the jth component of 
B'rj is negative or zero. We will assume that there are enough entries in the matrix B 
so that the jth component of B'rj is strictly negative, and then none of the faces of the 
positive orthant are invariant. In other words, the boundary of the positive orthant is 
mapped by the matrix B' to the exterior of the positive orthant. Since there is at least 
one vector, namely ro, that maps from the positive orthant into the positive orthant, it 
follows that B' maps the positive orthant to a cover of the positive orthant. Necessarily, 
B'' maps the positive orthant into the positive orthant and is therefore a positive map, 
meaning that its nonzero entries are positive. We conclude from the Perron-Frobenius 
theorem that B'-' has a positive eigenvector r, and that its corresponding eigenvalue 
is the largest in absolute value of the eigenvalues of B''. As a result, r is the unique 
positive eigenvector of B', and the corresponding eigenvalue is the smallest eigenvalue 
in absolute value of B'. 

The vector r is easily calculated by the inverse power method, since 

(4.9) lim l(B 
+ AoI)-r ? r. 

Of course, we should never calculate the inverse of B + AoI explicitly, but rather cal- 
culate its LU decomposition, and then perform the inverse iteration using forward and 
backward substitution. 

5. A maximum likelihood estimate. Suppose that the probability that team i beats 
team j is 7rij, and that the outcome of the contest between team i and team j is given by 
aij. For now we will take aij = 1 if team i beat team j, and zero otherwise. If the result 
of the contest between two teams is a Bernoulli trial with the outcome determined by 
the values 7rij, then the probability of the event aij is 
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We now suppose that the ranking vector r has the property that 

(5.2) 7ri = r+ 3 ri + r3 

so the probability that the outcome is represented by aij is 

(5.3) P(r) =J7J(Ii aij) (ri+rj) 
( r 7rj) 

i<i 

Since the outcome aij is known to have occurred, we pick r so that P(r) is as large as 
possible. The resulting vector r is called the maximum likelihood solution. 

The problem of choosing r to maximize P(r) is quite old. This model and an iterative 
method for its solution was first proposed by Zermelo in 1926 [14] and then rediscovered 
by Ford in 1955 [7] and is often called a Bradley-Terry model [3], [11]. We give a new 
proof of existence and uniqueness of the solution here. 

With the choice (5.2) and since the matrix A is fixed, it is equivalent to maximize the 
function 

(5.) FA(r) =Ir+i (rir I 

or 

(5.5) InIFA(r) = (aij(lnri -n(ri + rj)) + aji(Inrj -n(ri + rj))). 
i<j 

To show that a maximum exists, we assume that the matrix A is irreducible. Clearly, 
the function FA(r) is continuous and bounded on the interior of the positive orthant. 
While it is not defined on the faces of the positive orthant, if A is irreducible we can 
define FA = 0 on the faces of the positive orthant as the continuous extension of FA (r). 
That is, if ro is on a face of the positive orthant, then one of its elements, say ri, is zero, 
and another of its elements, say rj, is nonzero. Because the matrix A is irreducible, 
there is a sequence of indices io, i1,... , ik, with io = i and ik = j with the property that 
aiPiP+1 > 0 for p = O, 1, ... , k - 1. Necessarily, there are consecutive integers m < n for 
which rim = 0, and rin > 0. 

We write 
\aim in 

(5.6) FA(r) = (rim r )aimi 5(r), 

and observe that s(r) is positive and bounded in the interior of the positive orthant. It 
follows that limr rrO FA (r) = 0. As thus extended, the function FA (r) is continuous and 
bounded on the closed and bounded set E = {rlri > 0, Ei ri = 1}, FA(r) is strictly 
positive on the interior of the set E, and is zero on the boundary of the set E. It follows 
that FA (r) attains a maximum on the interior of the positive orthant. (This part of the 
proof is from Ford's work [7].) 

To find an extremum we differentiate the function In FA (r) to find 

(5.7) 
a 

InFA(r) = -k z jk 
ark rk rj +rk 
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THE PERRON-FROBENIUS THEOREM AND RANKING METHODS 89 

where ack = Ej ajk, and Ajk = ajk + akj Consequently, the maximizing vectors r must 
satisfy the nonlinear system of equations 

(5.8) Aak 
E k 

_ 

rk r; +rk 

Zermelo [14] and Ford [7] used an iterative method to solve (5.8). In my opinion, it 
is just as easy to solve (5.8) by integrating the system of differential equations 

(5.9) drk -ak A 3+k 
dt rk Erj + rk, 

using one's favorite numerical integrator, starting from any initial point in the interior of 
the positive orthant. We are assured that the solution of the differential equation system 
(5.9) will approach a steady state because it is a gradient system, and along trajectories 

dIn FA(r) a drk 
dt k ark (dA(t)) dt 

(5.10) a 2 

= E (I (nFA(r))) 

which is positive except at an extremum of In FA (r). Hence FA (r) increases along tra- 
jectories of (5.9). 

Finally, we can show that the maximum of In FA (r) is unique. We calculate the 
Hessian H of In FA (r) at any extremum to be H = (hik), where 

(5.11) hik =ik (r) _A3 + A + Or~~Ork i (ri+r~~3)) (ri+32 

By virtue of (5.8), 

(5.12) ai = EAij ( + > EAij ( i) 
j 3j+r j+r 

and the off-diagonal elements of H are positive. Observe also that H has a null space, 
since Hr = 0 for any vector r satisfying (5.8). This null space results from the invariance 
of (5.4) under changes of the scale of r. 

Now we want to find the eigenvalues of H. Notice that for any sufficiently large 
positive A0, the matrix -H + AOI is diagonally dominant. However, because all of its off- 
diagonal elements are negative, the matrix -H + AoI maps the boundary of the positive 
orthant to the exterior of the positive orthant. It follows from our friend the Perron- 
Frobenius theorem that (-H+AoI)-I is a map of the positive orthant into itself, having a 
unique positive eigenvector with corresponding eigenvalue p1, with p1 > L2 > ? * ,, * 
(This is the same application of the Perron-Frobenius theorem as used in ?4.) Therefore, 
the eigenvalues of H are 

(5.13) Ao-->>o--> ... >Ao-A 
1L A2 An 
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The maximizing vector r satisfying (5.8) also satisfies Hr = 0 so that r is an eigenvector 
of (-H + AoI)-I as well, and being positive, must correspond to its largest eigenvalue. 
It follows that A0 - (1/pIl) = 0, and the remaining eigenvalues of H must be strictly neg- 
ative. Thus, on the surface E, all extrema for In FA (r) are local maxima. We conclude 
that there is, therefore, exactly one extremum. 

The motivation for this model was based on the assumption that the numbers aij 
were integers. But clearly, there is nothing in the proof of existence and uniqueness that 
forces this requirement. For the purpose of ranking football teams it is preferable to use 
a different determination for aij. A choice that works well is 

(5.14) aij= 
si 

Sij + S3i 

6. Putting it all together. There are 106 Division I-A college football teams in the 
United States, which during each season play about 570 games, including bowl games. 
Schedules for the coming season and results from the previous season are available an- 
nually in the NCAA Football book (available from NCAA Publications, Mission, KS 
66201). 

In Table 1, we present the results of the above ranking schemes for the 1989 season. 
In Table 1 there are eight columns. The top 40 teams are ordered in the table according 
to percentage of wins. W-L-T refers to the win-lose-tie record for the 1989-90 season 
(including bowl games). Columns labelled 1-4 show the integer rank of the team for 
methods 1-4, respectively, and the columns labeled UPI and AP are the final poll results 
for those teams that were ranked. 

For this table, methods 1-4 are defined as follows: 
(1) The direct linear method based on the eigenvalue problem (2.2) with entries aij 

chosen using (2.4); 
(2) The nonlinear method (3.1) with f(x) satisfying (3.6) and scoring factors eij 

satisfying (3.7); 
(3) The least squares estimate of probabilities (4.6); 
(4) The maximum likelihood method (Bradley-Terry model) (5.3) with entries a 

satisfying (5.15). 
What can we conclude from all of this? First, there is no unique way to devise a rank- 

ing scheme. The different ranking schemes give different rankings because they weigh 
important factors differently. Each of the schemes proposed here have strengths and 
weaknesses, but invariably when a method is tweaked to get rid of some "undesirable" 
feature, another "counterintuitive" result shows up. After studying these methods for 
awhile, it is also apparent that intuition is not a good guide to determining a ranking. 
With 106 teams there are just too many factors to consider. On the other hand, the 
numbers are not biased; they simply report the results of the algorithm. 

It is interesting to compare the results of the ranking algorithms with the UPI and AP 
polls. First, it is obvious that there is much more variation between the ranking schemes 
than between the polls, suggesting that the two polls are not independent. Second, there 
are noted differences between the polls and the ranking schemes. For example, counting 
the number of teams whose poll rankings do not lie within the range of rankings from 
the four mathematical schemes, we find nine teams for whom the polls are "too high" 
and four teams for whom the polls are "too low." 
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TABLE 1 
Ranking of NCAA Division I-A football teams for 1989 season. 

Team W-L-T #1 #2 #3 #4 UPI AP 
Notre Dame 12-1-0 3 6 5 3 3 2 
Miami (Fla) 11-1-0 8 2 1 1 1 1 
Tennessee 11-1-0 4 10 8 11 5 5 
Colorado 11-1-0 11 5 10 7 4 4 
Fresno State 10-1-0 48 20 47 43 
Florida St. 10-2-0 2 3 2 5 2 3 
Auburn 10-2-0 6 8 4 8 6 6 
Alabama 10-2-0 9 11 6 12 7 9 
Arkansas 10-2-0 10 16 11 17 13 13 
Michigan 10-2-0 16 12 12 9 8 7 
Illinois 10-2-0 20 18 20 14 10 10 
Nebraska 10-2-0 29 9 13 13 12 11 
Clemson 9-2-0 5 7 9 6 11 12 
Houston 9-2-0 15 1 3 2 14 
USC 9-2-1 1 4 7 4 9 8 
Northern Illinois 7-2-0 65 52 59 68 
BYU 10-3-0 22 21 27 25 18 
Virginia 9-3-0 13 22 19 19 15 18 
Texas Tech 9-3-0 21 33 25 27 16 19 
Hawaii 9-3-1 33 28 46 41 
Eastern Michigan 6-2-1 79 49 83 90 
Penn State 8-3-1 19 15 18 18 15 15 
Pittsburgh 8-3-1 41 36 37 34 19 17 
Syracuse 7-3-0 45 39 38 45 
West Virginia 7-3-1 37 27 35 38 
Washington 8-4-0 7 13 14 10 19 20 
Arizona 8-4-0 12 24 28 20 
Oregon 8-4-0 17 19 23 21 
Texas A & M 8-4-0 18 17 16 16 20 
Duke 8-4-0 26 38 34 37 
Michigan State 8-4-0 32 14 15 15 16 16 
Ohio State 8-4-0 51 42 48 30 
Air Force 8-4-1 30 30 32 33 
Mississippi 7-4-0 24 34 21 31 
Oklahoma 7-4-0 57 29 44 29 
Ball State 6-3-2 81 59 90 89 
Georgia Tech 6-4-0 25 40 30 42 
Arizona State 6-4-1 39 57 52 44 
Virginia Tech 6-4-1 36 35 42 26 
Florida 7-5-0 27 25 22 23 
Number of upsets 102 110 108 100 

There are other ways that one might try to rank teams. For example, a method that 
is unrelated to those presented here is to try to minimize the number of upsets. An upset 
occurs when a team is ranked higher than a team to which it lost. At the bottom of the 
columns in Table 1 are listed the number of upsets for each of the algorithms used here. 
The number of upsets cannot be zero since there is no well ordering, but by assigning 
an objective function that measures the degree of an upset, we can devise algorithms to 
find the best ranking with respect to that particular measure. 

Appendix A. Proof of the Perron-Frobenius theorem. Let E be the set of all non- 
negative vectors with Euclidean norm one. For each vector s in the set E let a* be the 
positive number for which As < as whenever a > a*. If s has zero entries then a* may 
be infinite. Since E is a closed and bounded set, the smallest value of a* is attained for 
some vector s* in E. We claim that s* is a positive eigenvector of A. 

Suppose that As* < a*s* but s* is not an eigenvector of A. Then some, but not all, of 
the relations in the statement As* < a*s* are equalities. (If there were no equalities, the 
number a* would be incorrectly chosen.) After permutation, we can write the relations 
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As* < a*s* in the form 

(A.1) Alls + A12s2 < U*S1, 

A21s1 + A22s2 = U*S2 

Since A is irreducible, A21 is not identically zero, so we can reduce at least one 
component of the vector s1, thereby changing at least one of the equalities to a strict 
inequality, without changing any of the original strict inequalities. After this change in 
s* we rescale the vector to have norm one. Proceeding inductively, we can continue to 
modify the vector s* until all of the relations in As* < a*s* are strict inequalities, but of 
course, this contradicts the definition of a*; so we are done. 

To prove uniqueness, we note that a nonnegative eigenvector r must have all pos- 
itive entries. Suppose there are two linearly independent eigenvectors of A, r1 and r2, 
satisfying Ar1 = A1r,, and Ar2 = A2r2, and suppose that r1 has strictly positive entries. 
If the entries of r2 are all of one sign, then without loss of generality they can be taken 
as positive. The vector r(t) = r- tr2 has nonnegative entries for all t in some range 
0 < t < to with to > 0, and r(to) has some zero entries but is not identically zero, while 
for t > to, r(t) has some negative entries. Then Ar(to) = A1 (r1 - toA2/A1r2) has only 
positive entries. By the maximality of to, it must be that IA2 1 < IA1 |. But if both r, and r2 
have only positive entries, we can interchange them in the above argument to conclude 
that IA1 I < IA2 I . This is, of course, a contradiction. We conclude that the positive eigen- 
vector is unique and all other eigenvectors have eigenvalues that are smaller in absolute 
value. A minor modification of this argument shows that the largest eigenvalue is simple. 
For, if r2 is a generalized eigenvalue of A satisfying Akr2 = Akr2 for some k > 1, then 
Akr(to) = Alkr(to) is strictly positive, contradicting the definition of to. 

Appendix B. Proof of the nonlinear fixed point theorem (nonlinear generalization of 
the Perron-Frobenius theorem). Suppose F is a positive, monotone, and strictly concave 
mapping of a finite-dimensional space to itself. That is, F(r) > 0 for all r > 0, F(p) > 
(>)F(q) whenever p > (>)q, and F(tr) > tF(r) for 0 < t < 1. 

To see that there is at least one positive fixed point, let ro have all entries equal to 1 
and notice that F(ro) < 1. Define the sequence of vectors rk by successive approxima- 
tion 

(B.1) rk = F(rk-l), 

and notice that rk < rk-l. The monotone decreasing sequence of vectors {rk} is 
bounded below by F(O) > 0, and therefore converges to some positive vector r. Since 
F is continuous, r is a fixed point of F. 

The positive fixed point r is unique. If not, there is a positive vector q satisfying 
F(q) = q. Since r : q, one of the inequalities r < q and q < r must fail to hold. 
Without loss of generality suppose that q < r does not hold. Now, there is a maximal to 
with 0 < to < 1 so that tq < r for all t in 0 < t < to. Therefore, 

(B.2) r = F(r) > F(toq) > toF(q) = toq, 

contradicting the maximality of to. 

Acknowledgment. Thanks to Joe Keller for introducing me to this fascinating topic 
over ten years ago, and to Fred Phelps for his ideas on how to define a nonlinear ranking 
scheme. 
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