\[A : \mathbb{R}^n \to \mathbb{R}^k, \text{ a Linear Map} \]

Fact 1 The following are equivalent:
- \(A \) is one-to-one.
- \(\ker(A) = 0 \).
- \(\dim \ker(A) = 0 \).
- The equation \(Ax = y \) has at most one solution.
- The columns of \(A \) are linearly independent.
- The rows of \(A \) span \(\mathbb{R}^n \).
- \(A^T \) is onto.

Fact 2 The following are equivalent:
- \(A \) is onto.
- \(\text{image}(A) = \mathbb{R}^k \).
- \(\dim \text{image}(A) = k \).
- \(\text{rank} (A) = k \).
- The equation \(Ax = y \) has at least one solution.
- The rows of \(A \) are linearly independent.
- The columns of \(A \) span \(\mathbb{R}^k \).
- \(A^T \) is one-to-one.

Fact 3 If \(n = k \) the following are equivalent:
- \(A \) is invertible.
- Everything in Fact 1.
- Everything in Fact 2.
- For every \(y \) there is exactly one solution of \(Ax = y \)
- \(A \) is bijective (equivalently, \(A \) is an isomorphism).
- 0 is not an eigenvalue of \(A \).
- \(\det(A) \neq 0 \)