Examples Using Orthogonal Vectors

Simple Example Say you need to solve the equations

\[
\begin{align*}
 x_1 + x_2 + x_3 + x_4 &= y_1 \\
 x_2 - x_2 - x_3 + x_4 &= y_2 \\
 -x_1 + x_2 - x_3 + x_4 &= y_3 \\
 -x_1 - x_2 + x_3 + x_4 &= y_4
\end{align*}
\]

for \(x_1, x_2, x_3, x_4 \). Rewrite this as

\[
 \begin{bmatrix}
 1 \\
 1 \\
 -1 \\
 -1
 \end{bmatrix} x_1 + \begin{bmatrix}
 1 \\
 -1 \\
 1 \\
 -1
 \end{bmatrix} x_2 + \begin{bmatrix}
 1 \\
 -1 \\
 1 \\
 -1
 \end{bmatrix} x_3 + \begin{bmatrix}
 1 \\
 1 \\
 1 \\
 1
 \end{bmatrix} x_4 = \begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 y_4
 \end{bmatrix},
\]

that is,

\[
x_1 V_1 + x_2 V_2 + x_3 V_3 + x_4 V_4 = Y,
\]

where the \(V_j \) and \(Y \) are the obvious vectors. The key observation is that these vectors \(V_j \) are orthogonal and have length \(\|V_j\| = 2 \). It is now simple to solve the equations. Taking the inner product of both sides with \(V_1 \) we get

\[
x_1 \langle V_1, V_1 \rangle + 0 + 0 + 0 = \langle Y, V_1 \rangle,
\]

that is,

\[
x_1 \|V_1\|^2 = \langle Y, V_1 \rangle, \quad \text{so} \quad x_1 = \frac{1}{4} \langle Y, V_1 \rangle.
\]

By the same procedure,

\[
x_j = \frac{1}{4} \langle Y, V_j \rangle, \quad j = 1, 2, 3, 4.
\]

Not hard work at all.

While it may seem exotic (and lucky) that the vectors \(V_j \) were orthogonal, it turns out that this arises naturally and frequently in very important applications. For instance when Fourier series arise in the analysis of large data sets.

Orthogonal Projection

Let \(V \) be an inner product space (that is, a linear space with an inner product) and let \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k \) be non-zero orthogonal vectors and let \(S \subset V \) be the subspace spanned by these \(\vec{v}_j \)'s. Given a vector \(\vec{x} \in V \), we want to write

\[
\vec{x} = \vec{v} + \vec{w},
\]

where \(\vec{v} \in S \) and \(\vec{w} \perp S \). We then call \(\vec{v} \) the orthogonal projection of \(\vec{x} \) into \(S \) and often write \(\vec{v} = P_S \vec{x} \).

Because we know the \(\vec{v}_j \) are an orthogonal basis for \(S \), then any vector \(\vec{v} \in S \) can be written as

\[
\vec{v} = a_1 \vec{v}_1 + a_2 \vec{v}_2 + \cdots a_k \vec{v}_k
\]

so we can write \(\vec{x} \) as

\[
\vec{x} = (a_1 \vec{v}_1 + a_2 \vec{v}_2 + \cdots + a_k \vec{v}_k) + \vec{w},
\]

(2)
where \vec{w} is orthogonal to \mathcal{S}. This decomposes \vec{x} as the sum of two orthogonal vectors, \vec{v} in \mathcal{S} and one, \vec{w} orthogonal to \mathcal{S}. We often introduce the linear map $P_\mathcal{S}$ of orthogonal projection into \mathcal{S}

$$P_\mathcal{S}\vec{x} := \vec{v} = a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_k\vec{v}_k.$$

If we write \mathcal{S}^\perp for the orthogonal complement of \mathcal{S}, then $\vec{w} = P_\mathcal{S}^\perp \vec{x}$, so

$$\vec{x} = \vec{v} + \vec{w} = P_\mathcal{S}\vec{x} + P_\mathcal{S}^\perp \vec{x} = (a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_k\vec{v}_k) + \vec{w}.$$

The problem is to find the coefficients a_j and the vector \vec{w}. Easy!

Taking the inner product of both sides of equation (2) with \vec{w}, we find that $\langle \vec{x}, \vec{v}_1 \rangle = a_1 \langle \vec{v}_1, \vec{v}_1 \rangle$ and similarly for the other a_j's. Thus

$$a_j = \frac{\langle \vec{x}, \vec{v}_j \rangle}{\|\vec{v}_j\|^2},$$ \hspace{1cm} (3)

so we now know the coefficients a_j in equation (2). We can now solve equation (2) for \vec{w} and find

$$\vec{w} = \vec{x} - (a_1\vec{v}_1 + a_2\vec{v}_2 + \cdots + a_k\vec{v}_k),$$

Since the \vec{v}_j's and \vec{w} are orthogonal, the Pythagorean theorem applied to (2) tells us that

$$\|\vec{x}\|^2 = |a_1|^2\|\vec{v}_1\|^2 + \cdots + |a_k|^2\|\vec{v}_k\|^2 + \|\vec{w}\|^2.$$ \hspace{1cm} (4)

In particular,

$$\|\vec{w}\|^2 = \|\vec{x}\|^2 - \|P_\mathcal{S}\vec{x}\|^2 = \|\vec{x}\|^2 - (|a_1|^2\|\vec{v}_1\|^2 + \cdots + |a_k|^2\|\vec{v}_k\|^2)$$ \hspace{1cm} (5)

gives the square of the distance from \vec{x} to the subspace \mathcal{S}.

Remark: There are two slightly different approaches to finding the distance from a point \vec{x} to a subspace \mathcal{S}. In both approaches we end up computing

$$\text{Distance} = \|P_\mathcal{S}^\perp \vec{x}\|$$

Method 1 Find the orthogonal projection $\vec{v} = P_\mathcal{S}\vec{x}$. Then, as we found above, the orthogonal projection into \mathcal{S}^\perp is $\vec{w} = P_\mathcal{S}^\perp \vec{x} = \vec{x} - P_\mathcal{S}\vec{x}$.

Method 2 Directly compute the orthogonal projection into \mathcal{S}^\perp. For this approach, the first step is usually to find an orthogonal basis for \mathcal{S} and then extend this as an orthogonal basis to the \mathcal{S}^\perp. This usually involves far more computations – but there is one frequently occurring situation where it is very easy: when the dimension of \mathcal{S}^\perp is one.

Here is an Example. Let \mathcal{S} be the plane in \mathbb{R}^3 where $ax_1 + bx_2 + cx_3 = 0$. If we let $\vec{N} = (a, b, c)$, then the equation for the plane is simply $\langle \vec{x}, \vec{N} \rangle = 0$. Thus \vec{N} is an orthogonal basis for \mathcal{S}^\perp – and one never need to even find an orthogonal basis for \mathcal{S} itself. The orthogonal projection of \vec{x} into \mathcal{S}^\perp is then simply

$$\vec{w} = \frac{\langle \vec{x}, \vec{N} \rangle}{\|\vec{N}\|^2}\vec{N},$$

so the length of this vector \vec{w}, $\frac{|\langle \vec{x}, \vec{N} \rangle|}{\|\vec{N}\|^2}$, gives the distance from \vec{x} to \mathcal{S}.

Example In \mathbb{R}^4, let the subspace \mathcal{S} be the span of the vectors $\vec{v}_1 := (1, 1, -1, -1)$ and $\vec{v}_2 := (1, 1, 1, 1)$.

2
a) Find the orthogonal projection of $\vec{x} := (1, 2, 3, 4)$ into S.

b) Find the distance from \vec{x} to the plane S.

Solution:

(a) Note that the vectors \vec{v}_1 and \vec{v}_2 are an orthogonal basis for S. We want to write

$$\vec{x} = a_1\vec{v}_1 + a_2\vec{v}_2 + \vec{w},$$

(6)

where $\vec{w} \perp S$. Then the orthogonal projection of \vec{x} into S will be

$$P_S \vec{x} = a_1\vec{v}_1 + a_2\vec{v}_2,$$

By the general strategy use above, to find a_1 take the inner product of both sides of equation (6) with \vec{v}_1. Because \vec{v}_1 is orthogonal to both \vec{v}_2 and \vec{w}, we obtain

$$\langle \vec{x}, \vec{v}_1 \rangle = a_1\langle \vec{v}_1, \vec{v}_1 \rangle \quad \text{so} \quad a_1 = \frac{\langle \vec{x}, \vec{v}_1 \rangle}{\|\vec{v}_1\|^2} = -\frac{4}{4} = -1.$$

Similarly,

$$a_2 = \frac{\langle \vec{x}, \vec{v}_2 \rangle}{\|\vec{v}_2\|^2} = \frac{10}{4} = \frac{5}{2}.$$

Using these values in equation (6) we find the projection of \vec{x} into S is

$$P_S \vec{x} = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} + \frac{5}{2} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 3 \\ 3 \end{pmatrix}.$$

and the projection of \vec{x} orthogonal to S is

$$\vec{w} = P_{S^\perp} \vec{x} = \vec{x} - P_S \vec{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 3 \\ 3 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix}.$$

As a check, this \vec{w} is clearly orthogonal to S.

(b) Finally, using equation (5), the distance from the point \vec{x} to this subspace S is $\|\vec{w}\| = 1$.

Exercises

1. Find the distance between the point $\vec{x} = (1, 2, -3, 0) \in \mathbb{R}^4$ and the subspace of points $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ that satisfy $x_1 - x_2 + x_3 + 2x_4 = 0$.

2. Find the distance between the hyperplane of points $(x_1, x_2, x_3, x_4) \in \mathbb{R}^4$ that satisfy $x_1 - x_2 + x_3 + 2x_4 = 2$ and the origin.

3. In \mathbb{R}^5, let S be the subspace spanned by the vectors $\vec{v}_1 = (1, 1, -1, 0, -1)$ and $\vec{v}_2 = (1, 1, 1, 0, 1)$. Find the orthogonal projection of $\vec{x} = (1, 0, 0, 1, -1)$ into S and compute the distance from \vec{x} to S.

4. Find an orthogonal basis for the subspace of \mathbb{R}^4 spanned by $\vec{u}_1 = (1, 1, 0, 0)$ and $\vec{u}_2 = (0, 1, 1, 0)$.
5. Find a vector in \mathbb{R}^4 that is orthogonal to the subspace spanned by $\vec{u}_1 = (1, 1, 0, 0)$ and $\vec{u}_2 = (0, 1, 1, 0)$.

6. Find an orthogonal basis for the subspace of \mathbb{R}^4 spanned by $\vec{u}_1 = (1, 1, 0, 0)$, $\vec{u}_2 = (0, 1, 1, 0)$, and $\vec{u}_3 = (0, 0, 1, 1)$.

7. Find an orthonormal basis for the sub-space of \mathbb{R}^4 determined by $x_1 - x_2 + x_3 - 2x_4 = 0$.

8. Find a vector that is orthogonal to the above subspace.

Example: Fourier Series

The essential point of this next example is that the formalism using the inner product that we have just developed in \mathbb{R}^n is immediately applicable in a much more general setting – with wide and important applications. We use geometric intuition from \mathbb{R}^n to guide us through related ideas in infinite dimensional function spaces.

Here our linear space is $L_2(-\pi, \pi)$ with a standard (real) inner product

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) \, dx$$

and are using the linear space $T_N = \text{span}\{1, \cos x, \cos 2x, \ldots, \cos Nx, \sin x, \ldots, \sin Nx\}$.

An orthonormal basis is:

$$e_0 := \frac{1}{\sqrt{2\pi}}, \quad e_1 := \frac{\cos x}{\sqrt{\pi}}, \ldots, \quad e_N := \frac{\cos Nx}{\sqrt{\pi}}, \quad e_1 := \frac{\sin x}{\sqrt{\pi}}, \ldots, \quad e_N := \frac{\sin Nx}{\sqrt{\pi}}.$$

We want to find the projection of a given function $f(x)$ into T_N, that is, write

$$f(x) = a_0 e_0 + (a_1 e_1 + \cdots + a_N e_N) + (b_1 e_1 + \cdots + b_N e_N) + h_N, \quad (7)$$

where the “error,” h_N, is orthogonal to T_N. This problem is exactly of the form of equation (2).

Thus we can use all the results we obtained there.

First, we have a formula for the coefficients. This is a bit simpler here than the formula in equation (8) since $e_k(x)$ and $e_k(x)$ have $\|e_k\| = \|e_k\| = 1$.

$$a_0 = \langle f, e_0 \rangle, \quad a_k = \langle f, e_k \rangle, \quad b_k = \langle f, e_k \rangle, \quad j = .2, 3, \ldots.$$

Using the explicit formulas for the e_k and e_k we have

$$f(x) = a_0 \frac{1}{\sqrt{2\pi}} + \sum_{k=1}^{N} \left[a_k \frac{\cos kx}{\sqrt{\pi}} \, dx + b_k \frac{\sin kx}{\sqrt{\pi}} \right] + h_N(x), \quad (8)$$

where, as above, h_N is orthogonal to T_N. Series of this form are called **Fourier Series**. They are a vital ingredient in today’s world, including quantum mechanics, medical imaging and your cell phone.
For the coefficients we have

\[a_0 = \int_{-\pi}^{\pi} f(x) \frac{1}{\sqrt{2\pi}} \, dx, \quad a_k = \int_{-\pi}^{\pi} f(x) \cos \frac{kx}{\sqrt{\pi}} \, dx, \quad b_k = \int_{-\pi}^{\pi} f(x) \sin \frac{kx}{\sqrt{\pi}} \, dx. \]

(9)

These coefficients incorporate that \(h_N(x) \) is orthogonal to \(T_N \). To summarize,

\[f(x) = P_T f(x) + h_N(x) = a_0 + \sum_{k=1}^{N} \left[a_k \cos \frac{kx}{\sqrt{\pi}} + b_k \sin \frac{kx}{\sqrt{\pi}} \right] + h_N(x) \]

Of course, one hopes that \(\lim_{N \to \infty} \| h_N \|_{L^2(-\pi, \pi)} = 0 \). It is true for essentially all functions, certainly for all piecewise continuous functions \(f \). The above series is called the Fourier Series of \(f(x) \).

The Pythagorean formula (4) gives

\[\| f \|^2_{L^2(-\pi, \pi)} = |a_0|^2 + \sum_{k=1}^{N} \left(|a_k|^2 + |b_k|^2 \right) + \| h_N \|^2_{L^2(-\pi, \pi)}. \]

(10)

Privately, I call equation (10) the “Pythagorean Theorem for Adults”.

Explicit Example: Fourier Series of a Square Wave

Consider the function \(f(x) = \left\{ \begin{array}{ll} -1 & \text{if } -\pi < x \leq 0 \\ 1 & \text{if } 0 < x \leq \pi \end{array} \right. \)

We use equation (9) to compute the Fourier coefficients \(a_k \) and \(b_k \).

Since this \(f(x) \) is an odd function, then \(f(x) \cos \frac{kx}{\sqrt{\pi}} \) is also an odd function so \(a_k = 0 \), \(k = 0, 1, \ldots \). Similarly, using that \(f(x) \sin \frac{kx}{\sqrt{\pi}} \) is an even function, we have

\[b_k = \frac{1}{\sqrt{\pi}} \left[\int_{-\pi}^{0} (-1) \sin \frac{kx}{\sqrt{\pi}} \, dx + \int_{0}^{\pi} (1) \sin \frac{kx}{\sqrt{\pi}} \, dx \right] = \frac{2}{\sqrt{\pi}} \int_{0}^{\pi} \sin \frac{kx}{\sqrt{\pi}} \, dx. \]

But

\[\int_{0}^{\pi} \sin \frac{kx}{\sqrt{\pi}} \, dx = \frac{-\cos k\pi + 1}{k} = \begin{cases} 0 & \text{if } k \text{ is even} \\ \frac{2}{k} & \text{if } k \text{ is odd} \end{cases}. \]

Therefore

\[b_k = \begin{cases} 0 & \text{if } k \text{ is even} \\ \frac{4}{k\sqrt{\pi}} & \text{if } k \text{ is odd} \end{cases}. \]

We now substitute this into equation (8) and write \(N = 2n + 1 \) to obtain the following Fourier Series of a square wave:

\[f(x) = \frac{4}{\pi} \left[\sin x + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \cdots + \frac{\sin(2n+1)x}{2n+1} \right] + h_{2n+1}(x). \]

Here is a graph showing how the terms in this series approximate a square wave:

http://www.math.upenn.edu/~kazdan/312S14/notes/Fourier-SquareWave.gif

[From Wolfram MathWorld]
Finally we record the Pythagorean formula (10). Since in our case \(f(x)^2 = 1 \), then \(\int_{-\pi}^{\pi} f(x)^2 \, dx = 2\pi \) and equation (10) give

\[
2\pi = \frac{16}{\pi} \left[1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots + \frac{1}{(2n+1)^2} \right] + \|h_{2n+1}\|^2.
\]

With some work one can show that \(\lim_{n \to \infty} \|h_{2n+1}\| = 0 \). This yields the surprising formula

\[
\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots
\]

(11)

Subtracting

\[
\frac{1}{4} \left(1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots \right) = \frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \frac{1}{8^2} + \cdots
\]

from

\[
1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \left[1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots \right] + \left[\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \cdots \right]
\]

and using equation (11), by a simple computation we obtain

\[
\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots
\]

It is amazing that identities like these are rather immediate consequences of the Pythagorean Theorem. Not at all obvious.

[Last revised: February 27, 2014]