Problem Set 1

Due: In class Thursday, Jan. 23. Late papers will be accepted until 1:00 PM Friday.

These problems are intended to be straightforward with not much computation. I warmly suggest that you discuss these problems with others in the class.

Remark: Before class on Tuesday please read all of Chapters 1 and 2 in the text. Essentially it should be a review from Math 240.

1. Let \(A = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \). Compute the inverse of \(A \) and of \(A^2 \).

2. Solve all of the following equations. [Note that the left sides of these equations are identical.]
 a). \(2x + 5y = 5 \)
 b). \(2x + 5y = 0 \)
 c). \(2x + 5y = 1 \)
 d). \(2x + 5y = 2 \)

3. \[\text{Bretscher, Sec.2.1 #13} \] Finding the inverse of a matrix \(A \) means solving the system of equations \(A\vec{x} = \vec{y} \) for \(\vec{x} \), so \(\vec{x} = A^{-1}\vec{y} \).
 a) Let \(A := \begin{pmatrix} 1 & 2 \\ c & 6 \end{pmatrix} \). With your bare hands (as on page 2 of the textbook – not using anything about determinants) show that \(A \) is invertible if and only if \(c \neq 3 \).
 b) Let \(M := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \). With your bare hands (not using anything about determinants) show that \(M \) is invertible if and only if \(ad - bc \neq 0 \). [Hint: Treat the cases \(a \neq 0 \) and \(a = 0 \) separately.]

4. Let \(A \) and \(B \) be \(2 \times 2 \) matrices.
 a) If \(B \) is invertible and \(AB = 0 \), show that \(A = 0 \).
 b) Give an example where \(AB = 0 \) but \(BA \neq 0 \).
 c) Find an example of a \(2 \times 2 \) matrix with the property that \(A^2 = 0 \) but \(A \neq 0 \).
 d) Find all invertible \(n \times n \) matrices \(A \) with the property \(A^2 = 3A \).

5. \[\text{Bretscher, Sec.2.3 #19} \] Find all the matrices that commute with \(A := \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix} \).

6. a) Find a real \(2 \times 2 \) matrix \(A \) (other than \(A = \pm I \)) such that \(A^2 = I \).
 b) Find a real \(2 \times 2 \) matrix \(A \) such that \(A^4 = I \) but \(A^2 \neq I \).

7. Let \(L, M, \) and \(P \) be linear maps from the \((x_1, x_2)\) plane to the \((y_1, y_2)\) plane:
 \(L \) is rotation by 90 degrees counterclockwise.
 \(M \) is reflection across the line \(x_1 = x_2 \).
 \(N\vec{v} := -\vec{v} \) for any vector \(\vec{v} \in \mathbb{R}^2 \).
a) Find matrices representing each of the linear maps L, M, and N.

c) Which pairs of these maps commute?

d) Which of the following identities are correct—and why?

1) $L^2 = N$
2) $N^2 = I$
3) $L^4 = I$
4) $L^5 = L$
5) $M^2 = I$
6) $M^3 = M$
7) $MNM = N$
8) $N MN = L$

8. a) Find a 2×2 matrix that rotates the plane by $+45$ degrees ($+45$ degrees means 45 degrees counterclockwise).

b) Find a 2×2 matrix that rotates the plane by $+45$ degrees followed by a reflection across the horizontal axis.

c) Find a 2×2 matrix that reflects across the horizontal axis followed by a rotation the plane by $+45$ degrees.

d) Find a matrix that rotates the plane through $+60$ degrees, keeping the origin fixed.

e) Find the inverse of each of these maps.

9. Let A be a matrix, not necessarily square. Say V and W are particular solutions of the equations $AV = Y_1$ and $AW = Y_2$, respectively, while $Z \neq 0$ is a solution of the homogeneous equation $AZ = 0$. Answer the following in terms of V, W, and Z.

a) Find some solution of $AX = 3Y_1$.

b) Find some solution of $AX = -5Y_2$.

c) Find some solution of $AX = 3Y_1 - 5Y_2$.

d) Find another solution (other than Z and 0) of the homogeneous equation $AX = 0$.

e) Find two solutions of $AX = Y_1$.

f) Find another solution of $AX = 3Y_1 - 5Y_2$.

g) If A is a square matrix, then $\det A =$?

h) If A is a square matrix, for any given vector W can one always find at least one solution of $AX = W$? Why?

[Last revised: January 16, 2014]